MORE for Less: Model Recovery from Visual Interfaces

for Multi-Device Application Design

Yves Gaeremynck, Lawrence D. Bergman, Tessa Lau
IBM TJ Watson Research Center
19 Skyline Drive
Hawthorne, NY 10532 USA
+1 914 784 7946

bergmanl@us.ibm.com

ABSTRACT

An emerging approach to multi-device application development
requires developers to build an abstract semantic model that is
trandated into specific implementations for web browsers, PDAS,
voice systems and other user interfaces. Specifying abstract
semantics can be difficult for designers accustomed to working
with concrete screen-oriented layout. We present an approach to
model recovery: inferring semantic models from existing
applications, enabling developers to use familiar tools but till
reap the benefits of multi-device deployment. We describe
MORE, a system that converts the visual layout of HTML forms
into a semantic model with explicit captions and logical grouping.
We evaluate MORE's performance on forms from existing Web
applications, and demonstrate that in most cases the difference
between the recovered model and a hand-authored model is under
5%.

Categoriesand Subject Descriptors

D.2.2 [Softwar e Engineering]: Design Tools and Techniques—
user interfaces. D.2.2 [Software Engineering]: Distribution,
Maintenance, and Enhancement — restructuring, reverse
engineering, and reengineering.

General Terms: Algorithms, Design, Human Factors,
Experimentation.

K eywor ds. Model recovery, reverse engineering, semantic
modeling, rule systems, multi-device application development.

1. INTRODUCTION

Developing applications for multiple devices is a difficult task.
Devices have widely varying characteristics, input mechanisms,
and output capabilities. Designing a single application to be
delivered on devices as diverse as a desktop browser, a handheld
PDA, and a voice interface raises unique challenges for the
application designer. In an attempt to facilitate the devel opment
and maintenance of multi-device applications, many development
frameworks ([5],[8],[12],[13]) force developers to design
applications using an abstract specification language that can be
automatically transformed into executable applications for each
target device. In the PIMA system [3], for example, rather than

Permission to make digital or hard copies of all or part of thiswork for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on thefirst page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

IUI' 03, January 12—15, 2003, Miami, Florida, USA.

Copyright 2003 ACM 1-58113-586-6/03/0001...$5.00.

designing an application using a device-specific widget set,
designers author abstract models that specify abstract user
interface elements at a semantic level, such as multi-way choices
and input questions with explicit caption and hint text. PIMA
automatically converts abstract models into applications by
mapping each interactor (abstract widget) in the model to the
appropriate device-specific widget. For example, an n-way choice
that prompts for the user’s country could be rendered in a web
form as a drop-down list whereas a voice interface could have the
user speak the country name. A complete description of the
process of converting an abstract model into device-specific
applications can be found in [3].

A magjor barrier to multi-device application development is that
designers must be trained on a new suite of content-creation tools.
These abstract design tools can be unnatural for designers
accustomed to working with concrete Ul elements and layouts. In
addition, this approach only works for newly created applications,
legacy applications must be reimplemented from scratch.

To address these problems, we propose an automatic solution for
inferring abstract models from existing applications—a process
we cal model recovery. Simply identifying individual Ul
elements in an application is not sufficient; model recovery must
induce semantic relationships between elements in the application
(Figure 1). In the figure, the text “Opportunity Listings’ is a
caption of the select-many list of position titles, and the
month/year selectors for degree date are grouped as a logical

Opportunity Listings
[~ Admynistrato
I— Chief Lacke

i Completed or partial degree]
v ear [iszd

Eend me updatermtifranons: | Botne nese [T months
" Foreve

I SUBMIT your Application I I Clear ALL Entries I

nghest-Begrce{-PhB—»

Figure 1. Semantic model of aweb form shown in
MORE's visua model editor. Boxes indicate
strings or interactors. Arrows represent
relationships, such as captions, between elements.

| abstract model |

String(S,, “ Search for:")

contains contains I 0
I nput
\ Chpot,)
Search for: | caption caption™ Ljstltem Listltem gdr I:cgt(osze(lf)ear ch options’)
g n
Search options: ¢— S, ;S‘ﬁfifCh ”S‘ta_afo]Y phrase ;"I\':O _ Caption(l,, S,)
C Fiter by IDate j or: options iltering Phrase(P,)

" Mo filtering

Phraseltem Phraseltem

String(Ss, “Filter by:")

P

f "Filter by:” select one

Phraseltem(Py, S3)

Listltem Listltem

[oate” | [author |

Figure 2. A sample HTML form, the corresponding abstract semantic model represented as a tree,
and the same model represented as a collection of facts.

phrase. These semantic relationships are based on common
patterns we have observed in Ul design.

On the surface, model recovery resembles a parsing problem:
building parse trees from a sequence of symbols. However, our
problem is complicated by the fact that Ul elements are laid out in
a two-dimensiona user interfface. Thus, traditional one-
dimensional parsing agorithms are unsuitable for model recovery.

We believe an effective model recovery system must be:

e Interactive: designers must be able to update their
applications and see the results quickly; and

« Extensible: as new Ul design patterns emerge, the system
must be reconfigurable to recognize them.

This paper presents MORE, an interactive, extensible rule-based
approach to model recovery from visua user interfaces. We have
constructed a set of rules that capture common design patterns in
web gpplication forms; while specific to the HTML domain, we
believe that these rules are easily extended to cover new features
or non-HTML interfaces. We first give aformal definition of the
model recovery problem. Next we describe our algorithm and its
implementation. We then evaluate the performance of our system
on HTML forms drawn from existing web applications, and
conclude with ideas for future work.

2. THE MODEL RECOVERY PROBLEM

Let a concrete application A = {Fa} where {F,} is a collection of
facts in predicate form describing entities (strings and widgets) in
the origina application, relationships between those entities (such
as containment), stylistic properties (font size, weight, style) of
those entities, and their geometry (width, height, position). In the
case of HTML we extract these facts from the Document Object
Model (DOM) of the web page; similar object models can be
extracted, with more difficulty, from Java or Windows
applications, either by runtime traversal of the widget hierarchy or
through visual generalization [10].

Let an abstract model M = {Fy} where {Fy} is a set of facts
describing entities in the model and relationships between those
entities. An entity in an abstract model is either a string or an

abstract interactor such as an input field, a select-one list, or a
container object. Entity relationships include caption
assignments, membership in a multiple-choice interactor, and
group containment. Every abstract model has an equivalent tree
representation in which nodes correspond to entities and edges
correspond to relationships between the entities. Note that the
structure of an abstract model, which captures semantic
relationships, may be very different from the structure of the
origina application, which is based on presentation layout.

A model recovery system defines a mapping f(A) — M that maps a
concrete application A to an abstract model M.

This paper describes MORE, a system that converts HTML forms
to abstract models for use in the PIMA system. For example,
Figure 2 shows a simple web form and the abstract model
recovered from this application in both tree and fact
representation. Although the current implementation converts
each HTML form into a separate abstract model, we expect that
extending it to handle multi-page applications will be
straightforward.

3. AUTOMATED MODEL RECOVERY

We view model recovery as a search through the space of al
possble models. A model is a set of facts. Each state
corresponds to a partial model. The initial state contains the
starting set A. Each search operator augments a partial model by
adding factsto it. The allowable operators at each state add facts
that can be derived from and are consistent with the current
model. The goa state is the highest-scoring model out of al
models that could be generated from the application.

We assume that each entity plays a unique role in the abstract
model. For example, if a string is a caption for one interactor, it
cannot aso be a hint for the same interactor (see Figure 3). (This
is why the abstract model can be represented as atree instead of a
DAG or graph.) Two facts that assign different roles to the same
entity are mutually exclusive. Due to mutua exclusion, the order
in which facts are added to a partial model is important; a fact
selected at a given step may preclude adding a higher scoring fact
later on.

String(S,) Input(1,)

Caption(Sy, 1) [€~7" Hint(Sy, 1)

—_— Deduction rule dependency
---- Mutual exclusion

Figure 3. Dependency graph illustating mutual exclusion

MORE is based on a forward chaining rule system. Standard
rule-based systems use a fixed heuristic to resolve mutual
exclusion conflicts. In contrast, optimal conflict resolution in
model recovery often depends on properties of the interactors
involved in the conflict, such as relative position or text style.
MORE handles mutual exclusion using a look-ahead strategy that
reasons about potential conflicts, and resolves conflicts using a
scoring system.

Table 1 presents an overview of the MORE algorithm. Input
consists of aset of initial facts and a set of rules. Factsarekept in
a working memory. At any given moment, every fact in the
working memory must be either:

. Selected: part of the abstract model,
* Eliminated: not part of the abstract model, or
e Unprocessed.

The working memory may contain conflicting facts, but no
selected fact may conflict with another selected fact. When the
algorithm terminates, the set of selected facts forms the completed
abstract model.

Domain knowledge is expressed as three types of rules:

. Deduction rules, which produce new facts from selected
facts,

. Exclusion rules, which determine whether two given facts are
mutually exclusive, and

e Scoring rules, which assign scores to facts based on
properties of the interactors involved.

The agorithm proceeds as follows. At initidization, the working
memory is loaded with an initial set of facts representing the
concrete application A, which are al selected facts. Deduction
rules are iteratively applied to the selected facts in the working
memory. These deduction rules capture common patterns of Ul
design in the target domain, such as combining a string and an
input into a captioned text input, or grouping selectors together
into a phrase. The facts generated by each iteration of the
algorithm are added to the working memory as unprocessed facts.

To select facts that are to be added to the model, our hill-climbing
algorithm performs look-ahead by constructing conflict closures.
A conflict closure is a transitive closure of facts with respect to
mutual exclusion. In other words, it is a minimal collection of
facts such that each fact conflicts with at least one other fact in the
closure but none outside of it. Facts that conflict with no other
fact form singleton conflict closures. Thus, conflict closures form
a partition of the working memory.

Input:
A collection initial Facts of initial facts
A collection Ry of deduction rules
A collection R; of scoring rules
A collection R, of exclusion rules

Output:
An abstract dialog

1 | /* Initialization: */
2 | WorkingMemory memory = {};
3 | for f OinitialFactsdo
4 addFact(memory, f);
5
6 | /* Execution cycle. */
7 | while containsUnprocessedFact(memory) do
8
9 * Create conflict closures and select one. */
10 ClosureList list = getConflictClosures(memory, R);
11 Closure ¢ = selectConflictClosure(list, memory);
12
13 I* Select the best non conflicting subset. */
14 for fact O selectBestSubset(¢, memory, R;) do
15
16 /* Generate the deductions. */
17 for f O getDeductions(Ry, memory, fact) do
18 addFact(memory, f);
19
20 | /* Termination. */
21 | return getSelectedFacts(memory);

Table 1. Pseudocode for the model recovery agorithm

The algorithm selects the conflict closure deemed least likely to
create conflicts in the future and performs conflict resolution on
it. Using the scoring rules, conflict resolution selects the best
subset of the closure that does not contain incompatible facts. The
facts in the highest-scoring consistent subset are marked as
selected. The remainder of the conflict closure (facts which are
now inconsistent with the selected facts) is eliminated. Deduction
rules are applied to the newly selected facts and the loop
continues.

The algorithm terminates when all facts have been either selected
or eliminated. It returns the consistent set of selected facts, which
form an abstract model containing interactors, groups and their
properties. The following subsections describe the steps of the
algorithm in more detail.

3.1 Conflict closure selection

Conflict closure selection (Table 1, line 10) is based on the notion
of completeness. A conflict closure is said to be complete if the
selection of an unprocessed fact in the working memory cannot
produce, directly or indirectly, a deduction that conflicts with the
contents of the closure. If the agorithm selects a complete
closure, it ensures that no future deductions will conflict with this
local decision. Conceptually, conflict closures partition the page

M ethod:
selectConflictClosure

Input:
A collection closures of conflict closures
A working memory memory

Output:
The conflict closure to test during the cycle

1 | /* Find a complete conflict closure. */

2 | for closure O closures do

3 markAsComplete(closure);

4 TypelList types = getTypes(closure);

5 TypeList prerequisites = getPrerequisites(types);

6

7 for p O prerequisites do

8 if containsUnprocessedFactOf Type(memory, p)
then

9 markAslncomplete(closure);

10 break for;

11

12 if isMarkedAsComplete(closure) then

13 return closure;

14

15 | /* Return a default conflict closure. */

16 | return getOldestClosure(closures);

Table 2. Pseudocode for the closure selection algorithm

into locally ambiguous sections, enabling us to apply a divide-
and-conquer approach, resolving each section in turn.

We illustrate conflict closure selection using the example in
Figure 2. Assume the working memory contains three selected
facts:

String(S,), the string built from S,
String(S,), the string built from S,
Input(l,), the input interactor built from 1,

and three unprocessed facts:

A = Caption(l4, S;), acaption built from S, and |,

B = Caption(l,, S,), acaption built from S,and |,

C = Input(l,)
A, B, and C form two conflict closures: {A, B} and {C}. {A, B}
involves two mutually exclusive caption assignments, which
depend on strings and interactors. As C represents an interactor
that has not been processed yet, our agorithm considers the { A,
B} closure incomplete. {C} involves the construction of a new
interactor. No unprocessed fact may produce a deduction that
conflicts with C, therefore this conflict closure is considered
complete. As aresult, our algorithm examines {C}. After fact C
is processed, two new potential captions are generated:

D = Caption(l,, S;), the caption built from S, and I,

E = Caption(l,, S;), the caption built from S; and I,
Having made these deductions, the working memory contains four
conflicting facts: A conflictswith B, B conflictswith D, D with E,
and E with A. Thus, A, B, D and E belong to the same conflict

closure {A, B, D, E}. During the next execution cycle, the
conflict closure { A, B, D, E} will be selected as compl ete.

During a single execution cycle, the agorithm typically produces
more than one conflict closure. During the first cycle, for instance,
each initial fact is a member of its own conflict closure, since the
facts do not conflict. The agorithm then selects one of these
closures for further examination.

To determine whether a conflict closure is complete, one must
execute the deduction rules for all unprocessed facts in the
working memory, which would be computationally infeasible.
Instead, we use a conservative heuristic for approximating a
complete conflict closure, presented in Table 2. The heuristic
relies on knowing the fact types consumed and produced by each
deduction rule. Using these type dependencies, our agorithm
computes a dependency graph over deduction rules and fact types
(Figure 3). The dependency graph is used to calculate the
prerequisites of a conflict closure (Table 2, lines 4 and 5). If the
working memory contains an unprocessed fact whose type is a
prerequisite for a conflict closure, one of its deductions could
potentially conflict with the content of the closure. Therefore, the
closure is not considered complete (Table 2, lines 9 and 10). This
heuristic is sound but not complete. The closure it selects is
guaranteed to be complete; however, if acomplete conflict closure
exists, the agorithm is not guaranteed to select it.

In certain cases, the closure selection agorithm may not find a
complete conflict closure. This situation may occur if there is a
cycle in the dependency graph. In such cases, we heurigtically
select a conflict closure by choosing the closure with the oldest
fact.

3.2 Conflict resolution

After a conflict closure is selected, the conflict must be resolved.
Conflict resolution selects the best subset of the closure that does
not contain incompatible facts. The algorithm assigns scores to
the facts using scoring rules associated with each fact, then selects
the non-conflicting subset with the highest score. Scores are
functions of properties and relationships between the interactors,
such as distance, direction, size, font style, and textual content.

A complete solution to conflict resolution would consider all
possible subsets of the conflict closure. The complexity of this
algorithm scales exponentially with the size of the conflict
closure, which is a problem since the closures manipulated by
MORE may be large. For example, closures involving caption
and hint assignments may include many of the elements on a page.

Instead, we perform a greedy search to resolve the conflict, as
shown in Table 3. At each step, the resolution algorithm selects
the fact from the closure with the highest score, removes it and its
aternatives from the closure, then repeats until the conflict
closure is exhausted. Although this approach is not guaranteed to
compute the optimal conflict resolution, it worked well in practice
on the web pages we tested.

In the example given in the previous section, the conflict closure
{A, B, D, E} contains two consistent subsets: { B, E} and {A, D}.
The latter has a higher score, based on proximity and orientation
of the captions with respect to their associated interactors.

M ethod:
getBestSubset
Input:
A conflict closure closure
A working memory memory
A collection R of scoring rules

Output:

The locally optimal subset that does not contain
incompatible facts

1 | FactListlist={}

2

3 | /* lterate until the conflict closure is empty. */
4 | while! isEmpty(closure) do

5

6 [* Select the best fact. */

7 Fact bestFact;

8 float bestScore = 0;

9 for fact O closure do

10 float score = getScore(fact, list, memory, Ry);
11 if score > bestScorethen

12 bestFact = fact;

13 bestScore = score;

14

15 /* Add it to the set and update the closure. */
16 list.add(bestFact);

17 markAsSel ected(bestFact);

18 remove(closure, bestFact);

19 for fact O getAlternatives(bestFact) do
20 remove(closure, fact);

21 markAsEliminated(fact);

22

23 | returnligt;

if are_close(string, interactor)

and not interactor_between(string, interactor)
then new Neighbors(string, interactor);

if Neighbors(string, interactor)

and is valid_caption(string)

then new Caption(string, interactor);

if Neighbors(string, interactor)

and is valid_hint(string)

then new Hint(string, interactor);

Table 3. Conflict resolution algorithm

4. IMPLEMENTATION

We have implemented the MORE model recovery system as part
of the PIMA framework for writing and deploying multi-device
applications [3].

We began by collecting a set of 98 HTML web forms. We
attempted to ensure broad coverage by selecting pages that differ
both in their goals (registration, search, survey forms, etc.) and
their design. From this collection, we chose 50 at random and
used them to design MORE's rule set; the remainder were held
out as a test set for the evaluation described in the next section.
Each page provides three sources of information: the DOM
structure of the web page, the style of the Ul elements, and their
geometry. The observations collected during analysis of the
training set were trandated into arule set containing 33 deduction
rules, 3 exclusion rules, and 4 scoring rules. The rules are
implemented in Java.

Table 4 shows pseudocode for three of the deduction rules in
MORE that generate caption and hint assignments. These rules

Table 4. Deduction rules for caption and hint assignments

_Input
.

Caption

" Sdect-one
Figure 4. User interface for editing recovered models

are based on the observation that captions and hints always occur
in the vicinity of their corresponding interactor. In addition, a
string is very unlikely to be associated with an interactor if thereis
another interactor between them. Therefore, when building pairs
of neighboring strings and interactors, the first rule checks for the
presence of possible obstacles. Thistest is rather complex because
it requires knowledge of the complete content of the page. The
second rule builds captions from neighbors and the third one
deduces hints from strings. Both rules perform additiona tests not
shown in the table: for instance, we observed that captions are
never enclosed in parentheses.

Exclusion rules are straightforward and not shown here. Scoring
rules are more complex, but we omit them due to space
limitations. These rules typically take into account the style of
the interactors and their relative distances, orientations, and
positions. For example, aitalicized hint has a higher score than
a boldfaced hint, and a caption relationship between a string and
a nearby interactor has a higher score than the same string with a
distant interactor.

4.1 User Interface

We have designed a user interface that visualizes the recovered
abstract model by overlaying markup directly on a rendered web
page (Figures 1 and 4). Rectangular boxes of different colors
represent interactors, strings, and groups. Arrows link these boxes
to show the various property assignments.

The Ul alows designers to modify the automatically constructed
model in cases where MORE makes incorrect inferences. Boxes
and arrows can be created, moved, or deleted; these changes are
then propagated to the underlying model.

30

25 -

20

15 4

10 4

Number of pages

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Errors (%)

Figure 5. Histogram of evaluation results, showing the
number of pages versus the percent errors on a page.

5. EVALUATION

In this section, we present an empirica evaluation of the accuracy
of our system. We measure the performance of our algorithm on a
given page by comparing the model computed by MORE with an
ideal model of the same page created manually.

In order to compare two models, we first convert the model into
its canonical tree representation (see Figure 2 for an example).
Nodes in the tree represent entities (strings and interactors), while
edges represent relationships between entities. We use a standard
edit distance metric to compare two trees, which counts the
number of editing operations required to convert one tree into the
other. The edit distance depends on the set of allowable editing
operations. For a conservative metric, we limited the set of
operations to node additions and deletions. For instance, if a piece
of text is recognized as a caption when it should be a hint, two
mistakes are counted: the removal of the node representing the
caption, and the addition of the same node as a hint. The number
of mistakes is then normalized by the number of nodes in the
correct model. We do not count all nodes, however. For instance,
we ignore list items inferred from options contained in HTML
<sel ect > elements. This is because it is common for a page to
contain <sel ect > elements with a large number of options, and
recognizing them correctly is trivial. Underestimating the size of
the web page in this way makes our metric even more
conservative.

We evaluated the performance of our approach on atest set of 48
pages. The idea models contained on average 80 nodes; the
largest model contained 173 nodes. Figure 5 shows the results of
the evaluation. Overall, MORE recovered the correct model from
40% of the web pages with no error. 53% of the web pages were
recovered with less than 5% error, while 77% of the web pages
contained less than 10% error. As the figure shows, MORE can
handle a large percentage of web pages with few mistakes. These
results confirm that it is possible to identify common patterns in
user-interface design, and use these patterns to infer abstract
models from existing web applications. Although the figure shows
that some pages were recovered with alarge fraction of errors, the
edit distance metric is misleading because the number of errors
increases rapidly whenever MORE incorrectly groups Ul
elements. Each element must first be removed from the group it
belongs to and then added to the correct group. In particular, the
rule that groups checkboxes into a selectable list did not correctly

identify large checkbox groups on several pages, resulting in
several pages with very low accuracy.

Although MORE does not recover models with 100% accuracy,
mistakes can be easily corrected using MORE's visual model
editor. In addition, we are currently investigating techniques for
automatically applying the same changes to future models
generated from the same application.

6. RELATED WORK

Many research projects have addressed the problem of re-
engineering user interfaces, particularly in the domain of web
pages. HTML is interesting for many reasons: its popularity, its
simplicity, the availability of an object model, and the power of its
content creation tools.

We distinguish between two types of re-engineering tools: reverse
engineering and re-authoring systems.

Reverse engineering tools extract content from user interfaces.
Several such tools extract a model-based representation of a user
interface. Vaguita [4] addresses the problem of making aweb site
accessible to a wide range of computing platforms. It alows
developers to trandate web pages into a model-based
representation according to multiple reverse engineering options.
Vaquita focuses on the XIML [16] presentation model of the web
site: it extracts the hierarchy of the Ul elements contained in
HTML pages and their layout relationships. Semantic
relationships between elements are not inferred automatically and
must be specified by the user. MORE, on the other hand,
explicitly captures semantics such as captions and hints.

Ware [2] aims to simplify the maintenance of a web application
spanning multiple web pages by converting it to a UML
representation. Ware extracts the architecture of the application,
the dynamic interactions, and typical scenarios of use based on an
automatic static analysis, and user-driven dynamic and behaviora
analyses. While Ware focuses on dynamic interaction, MORE is
concerned with identifying static relationships between elements
on asingle page. Similarly, Mathaino [11] uses execution traces
to migrate a legacy application to a new platform, focusing on
user interaction rather than static layout.

Paganelli and Paterno [6] present a system that extracts task
models from multi-page web applications. Their system traverses
the DOM of each page, extracting relevant tags and links and
transforming them into a hierarchical model. The rules in this
system unambiguously transform DOM nodes into model nodes,
capturing only relationships explicitly specified in the HTML. In
contrast, MORE infers semantic relationships between page
elements and utilizes additional information such as geometry and
style.

Re-authoring techniques apply a set of transformations to a user
interface. Therefore, their output is necessarily a user interface of
the same type as the input. For example, Digestor [1] provides
device-independent access to a web site. It is implemented as a
proxy that automatically applies transformations such as elisions
to make the page fit into a browser. Re-authoring techniques are
applied recursively. At every step, the search process determines
which transformations may be applied and an evaluation function
selects the document with the smallest display area requirements.

Like Digestor, ReWeb [5] applies rewrite rules to web pages but
with the perspective of improving their maintainability, usability,

and portability. Rewrite rules may target a single page, such asthe
correction of mistakes in the DOM, or multiple pages, such as the
reorganization of aweb site into frames.

Severa companies and consortia are actively designing and
standardizing languages to represent device-independent
applications: XForms [15], and UIML [14] are two such
languages. Our approach to model recovery from concrete
applications enables developers to continue using familiar
content-creation tools, while the PIMA framework can be
extended to trandate the abstract modd to any of these target
platforms.

Although we considered formulating model recovery as a
congtraint-satisfaction problem (e.g., [8]), we believe that
expressing these transformations as a set of rules is more natural.
Our approach to building a model using a set of rulesis similar to
a standard forward-chaining rule engine, but with severa
differences.

Most of the deduction rules are aggregation rules. For example,
transforming a set of checkboxes into one or more selectable lists
requires partitioning the set of checkboxes according to proximity
and style. Although it is possible to write declarative rules to
perform these aggregations, the logic of each of them must be
broken into severa rules. As a result, the size and the complexity
of the rule set increases rapidly.

Many deduction rules are complex and are difficult to express
declaratively. For instance, a string is very unlikely to be the
caption of a given interactor if there is another interactor in
between. Therefore, the rule that finds captions needs to be aware
of the complete content of the user-interface to return a relevant
result.

More importantly, the generated model may not contain two
mutually exclusive deductions. For instance, if one rule deduces
that a given string is a caption while another one assigns it as a
hint, only one deduction—preferably the best one—should be
kept. The standard way to express mutua exclusion in a rule
system is by using negative conditions. However, even with
negative conditions, it is difficult to control which rule instance
will be chosen, since this choice typicaly depends on a fixed
heuristic encoded into the rule engine such as selecting the rule
with the fewest conjuncts. A better solution consists of executing
all conflicting rule instances and adding another set of rules to
pick the best non-conflicting combination of deductions. This
solution provides better control over the deduction process.
However, it is very complex to implement it in a declarative
manner. Depending on the features offered by the forward-
chaining system, implementation might not even be possible. In
both solutions, rules must implement the logic that performs the
aggregations as well as the logic that handles mutual exclusion.
As aresult, the rule set is difficult, if not impossible, to develop
and maintain. In contrast, our approach uses conflict closures to
handle mutual exclusion, and incorporates scoring rules to
dynamically select the best rule based on characteristics of the
interactorsinvolved.

7. CONCLUSIONSAND FUTURE WORK

We have presented MORE, an interactive, extensible rule-based
approach to the model recovery problem: trandating a visua
application into an abstract application model for use in multi-
device application development. Model recovery is feasible

How do vou rate this web site?

Uiy Pocr Average Good 37

poor good
Orgamzation: @ L8 ® [[
Design: L o L o o

Figure 6. A form whose interactors share captions

because it is possible to identify design rules (i.e., patterns) that
are common to visual applications. We have constructed a set of
rules that capture common design patterns in web application
forms; we believe that these rules could be easily extended to
cover new features or non-HTML interfaces.

Our agorithm is based on a modified forward-chaining rule
engine that incrementally builds the model by generating new
facts at each step. Domain knowledge is encoded in the system by
three sets of rules. Deduction rules assign semantics to Ul
edements and aggregate them. Mutual exclusion rules specify
which deductions conflict which each other. Scoring rules
determine which facts should be preferred over others based on
characteristics of the interactors involved.

Future work on MORE will include enriching and refining the
rule set so as to improve the quality of the generated models. In
addition, we plan to investigate techniques for modeling non-
visual elements of application interfaces, such as inferring abstract
event-handlers from JavaScript code. Our assumption that each
user interface element has a unique role does not hold in all cases.
Figure 6 presents such a case: it shows a portion of survey form
that contains two lists of radio buttons. Both lists share the same
captions—the strings across the top. In the future we will
investigate how to model this kind of application in our system.

Another interesting possibility is to add learning capabilities to
the model recovery process. We could use feedback from human
correction of the system’'s mistakes to automatically update the
weights in the scoring rules. This mechanism would alow us to
automatically determine the weights that produce optimal results,
and additionaly it would alow MORE to adapt to the design
conventions of a particular Ul designer or web site.

8. REFERENCES

[1] Bickmore, T.W., Shilit, B.N., Digestor: Device-independent
Access to the World-Wide-Web, Proceedings of the 6th
WWW Conference, 1997.

[2] Di Lucca G.A., Di Penta, M., Antoniol, G., Casazza, G., An
Approach for Reverse Engineering of Web-Based
Applications, Proceedings of WCRE '01, pp. 231-240.

[3] Bergman, L.D., Banavar, G., Soroker, D., Sussman, J,
Combining Handcrafting and Automatic Generation of User-
Interfaces for Pervasive Devices, Proceedings of CADUI 11
(2002), pp. 155-166.

[4] Bouillon, L., Vonderdonckt, J., Souchon, N., Recovering
Alternative Presentation Models of a Web Page with
VAQUITA, Proceedings of CADUI ' 02, pp. 311-322.

[5] Puerta, A. and Eisenstein, J, Towards a Generd
Computational Framework for Model-Based Interface
Development Systems, Proceedings of 1Ul 99, pp.171-178.

[6] Paganelli L., Paterno, F., Automatic Reconstruction of the
Underlying Interaction Design of Web Applications,
Proceedings of SEKE ' 02, pp. 439-445.

[7] Ricca, F., Tonela, P., Baxter 1.D., Restructuring Web
Applications via Transformation Rules, Proceedings of
SCAM ‘01, 150-160

[8] Sannella, M, SkyBlue: A Multi-Way Local Propagation
Congtrain Solver for User Interfface Construction,
Proceedings of UIST '94, pp. 137-146.

[9] Singh, G, Kok, C. and Ngan, T., Druid: A System for
Demondtrational Rapid User Interface Development,
Proceedings of UIST 1990, pp. 167-177.

[10] St. Amant R., Lieberman H., Potter R., Zettlemoyer L.,
Visua Generdization in Programming by Example,
Communications of the ACM, v.43 n.3, 107-114, March
2000.

[11] Stroulia, E., Kapoor, R.V., Reverse Engineering Interaction
Plans for Legacy Interface Migration, Proceedings of
CADUI '02, pp. 295-310.

[12] Sukaviriya, P., Foley, J, and Griffith, T., A Second
Generation User Interface Design Environment: The Model
and the Runtime Architecture, Proceedings of ACM
INTERCHI'93, pp.375-382

[13] Szekely, P., Luo, P., and Neches, R., Beyond Interface
Builders: Model-Based Interface Tools, Proceedings of ACM
INTERCHI'93, p.383-390.

[14] UIML, http:/ivww.uiml.org
[15] XForms, http:/Aww.w3c.org/M arkup/Forms/
[16] XIML, http://Aww.ximl.org/

