Personal Wizards: collaborative end-user programming

Lawrence Bergman, Tessa Lau, Vittorio Castelli, and Daniel Oblinger

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

+1 914 784 7946

bergmanl@us.ibm.com

INTRODUCTION

Users of computing systems follow procedures to accomplish their goals. In some cases, where procedures are dictated by an organization’s business process, users must follow a prescribed sequence of steps to accomplish tasks such as requesting travel reimbursement, procuring a new workstation, or managing payroll for their employees. Systems management administrators follow a different set of best practice procedures for tasks such as configuring and optimizing an organization’s email systems, and diagnosing and repairing network problems. End users accumulate their own personal collections of procedures for accomplishing their own goals, such as monitoring stock portfolios or collecting information for a presentation.

Despite the ubiquity of these procedures, however, current systems provide little support for documenting or capturing procedural knowledge. Printed manuals are expensive to produce, and are often inadequate: it is hard to find what you want, and difficult to use what you find. Infrequent users of a procedure are often forced to make notes on paper in order to remind themselves of the right sequence of steps to complete a task. Yet no matter how often a user completes a task, the system always requires the user to perform the same rote actions over and over again. For widespread business processes, the local IT department may write software to automate these procedures, but these programs are typically brittle and costly to upgrade when the underlying process changes.

The vision of the Personal Wizards project is to dynamically capture corporate and personal procedures through cross-application programming by demonstration [1,3]. The Personal Wizards system observes experts’ keystrokes and mouse actions as they perform a procedure on the desktop. Experts may annotate the procedure at key points, associating appropriate text with certain steps in the procedure. The system then produces a Personal Wizard that can guide a new user through a similar task, presenting the right information at the right time, and automating particularly repetitious steps in the procedure.

In designing the system, we are guided by the following desiderata:

· Lowering the barriers to authoring procedural knowledge

· Learning from multiple experts

· Collaborative exploration of all possible paths through a procedure

· Creation of robust procedures with branches and failure recovery

· Human-understandable procedures

Collaborative authoring is a central concept in our work. Our vision is that many procedures will be created by gathering information from a variety of experts. This has several advantages:

· The procedure captures execution under a variety of system configurations and working environments.

· The procedure captures variation in the ways in which a task can be performed.

· The collaborative process facilitates identification of operations that are relevant to a procedure, and those that are peculiar to a user (such as frequent breaks to read e-mail), without a need for manual labeling.

This paper presents our work on the Personal Wizards project and situates it within the context of end-user programming. We begin by outlining a number of concrete scenarios where Personal Wizards could be applied.

USAGE SCENARIOS

In this section we present a set of scenarios intended to illustrate some of the different ways in which the Personal Wizards (PW) system might be used. Although one of the goals of Personal Wizards (and end-user programming in general) is to blur or remove the distinctions between authors and consumers of procedures, we note that some users of this system will be “expert users”. In fact, some users will be explicitly charged with developing procedures for use by others. For this reason, in the following set of scenarios, we will use the term “expert” and “novice” to distinguish these roles, pointing out where the two roles may be interchangeable or merge.

Scenario 1: Technical support

In this scenario, we consider development and deployment of procedures for troubleshooting failures in a technical support environment. Desk-side support personnel will be responsible for authoring of procedures, for example a procedure that troubleshoots installation of a network card. The support staff may train the PW system by deploying a PW client on the desktop of a caller and “driving” it remotely. During the troubleshooting session, or at a later time, the support person may add annotations to the procedure.

Once trained on a number of service calls, troubleshooting procedures can be deployed electronically by support staff, or made available automatically through websites. This allows end-users to invoke the PW procedure in a novice role, gaining access to an electronic troubleshooting assistant. The Wizard will prompt for input as needed, and guide the novice through the troubleshooting procedure. The novice can choose to execute in a step-wise fashion, or to allow the procedure to execute on its own, only pausing when user-input is required.

We note that there will always be cases where the Wizard will run into previously unencountered configurations. In such cases, PW will notify the novice and suggest consultation with user support. If the novice is able to complete the procedure on their own, they will be encouraged to submit their execution trace back to the helpdesk, allowing the troubleshooting procedure to evolve. In this case, the novice dynamically assumes the role of expert.

Scenario 2: Software Debugging

Debugging a piece of software often involves elaborate procedures that include: supplying the application with the required inputs, examining and capturing key state variables, and exercising control over the procedure – stepping in and out of functions, setting and removing breakpoints, etc. Often the same debugging procedure is employed multiple times with only small variations in each execution. We envision PW assisting with such repetitive debugging tasks. In this case, the programmer assumes the roles of both expert and novice.

Scenario 3: Desktop procedures

Use of computers in both home and business environments involves a wide variety of repetitive tasks. These include tasks such filing expense accounts, ordering supplies, and reorganizing address books. In these scenarios, the same user may play both expert and novice, first recording a procedure then employing it again in the future to automate or replay a similar task.

Scenario 5: Live Tutorials

Tutorials are traditionally document-based walkthroughs of the set of steps required to accomplish a particular goal. Recently, video-style tutorials, which show the sequence, often by highlighting the controls of the application itself, have become popular. These tutorials are typically hand-scripted.

We envision the PW system being used to provide “live” tutorials – showing the novice how a procedure is executed by guiding him through the actual performance of the task. PW enables rapid authoring of such tutorials; the author simply demonstrates the procedure, supplying annotations as desired. Furthermore, the tutorial readily adapts to changes in the underlying procedure, since new demonstrations are far easier to perform than manually adjusting a script.

USER INTERFACE CHALLENGES

Several key issues must be addressed in the design of the PW user interface. These include supporting mixed-initiative control during training and execution of procedures, providing support for annotation during authoring, providing cues to the novice that indicate the outcomes and implications of various pathways through a PW procedure, and providing means for debugging a procedure when it fails.

Control

The PW interface must provide for flexible changes of role – at times the user may be authoring a procedure in the role of expert, at other times using it as a novice. We want to support the user in changing roles with as little overhead as possible, allowing them to alternate between roles as teacher and student. By observing when a novice changes parameters, or deviates from the default procedure, and adjusting the procedure accordingly, PW supports a continuous authoring process, in which the procedure evolves over time as it is used in new situations. Furthermore, we will provide mechanisms for the user to specify whether updates are local, or can be contributed to procedures in a wider community.

Annotation

One way in which expert knowledge is easily communicated from the expert to the novice is through annotations. In the PW system, the expert provides annotation associated with individual execution steps or sets of steps as liberally as she deems appropriate. On playback, the novice is presented with annotations, which may indicate not only the required actions or inputs, but also can provide information on the sub-procedure being performed as well as the rationale for proceeding along particular paths within a procedure.

Visualization

The ability for PW to communicate to the novice possible actions that the procedure might take is critical. This is the problem of procedure visualization. We anticipate exploring a variety of procedure visualization alternatives.

Two main strategies for visualizing procedures make use of spatial and of temporal sequencing of information. Spatial arrangements include collapsible hierarchies and comic strips (see [1] for an example of the latter). We will explore extensions to each. Providing for expert manipulation of hierarchical procedure/sub-procedure structures may be an effective way for an expert to impart knowledge of procedure structure, and for the novice to examine that information. Comic strips have the shortcoming of showing a linear path through a procedure. We will extend this metaphor to show branch points and permit the novice to interactively “scroll” through alternatives at any branch point.

Temporal displays show a sequence of actions in time. Procedure visualization can begin by highlighting the control(s) to be activated at the current step. The user will be able to examine the consequences of particular actions by selecting the associated highlighted UI element in “examine mode” and then “stepping through” the procedure. This gives the novice the capability of “looking ahead” in the procedure without actually executing it.

Debugging

Another important consideration in designing the PW interface is providing methods for recovery and repair when the procedure “goes wrong”. One possible approach is to provide an “undo” for any operation. The novice is much more likely to let PW “have its head” if she knows that any incorrect actions can be easily undone.

RESEARCH CHALLENGES

This section outlines the technical research challenges we have identified in learning end-user programs by demonstration. Our general view is to approach programming by demonstration as a machine learning problem: acquiring generalized programs based on traces of those programs’ execution behavior. The general problem can be described in terms of several sub-problems.

Given a trace, the first problem is to segment the trace in order to identify procedure and sub-procedure boundaries. Traces must then be generalized in order to determine the user’s intent in performing each of the concrete user interface actions in the trace. Given several traces, the next challenge is to simultaneously align portions of the traces such that subsequences of similar functionality are paired together. Underlying the alignment and generalization process is a specific procedure representation that captures the meaning of the procedure. Finally, a retrieval process is needed for a user to index and locate a procedure in the knowledge base that will assist in a particular task. The following subsections briefly describe each of these research challenges in turn.

Segmentation

The first research challenge is to segment the traces into procedures and sub-procedures. In previous programming by demonstration systems [5], the user manually indicates the start and end of each demonstration. However, this may prove to be too much of a burden for some users, who may not realize that they have begun executing a repetitive task until partway into the procedure. In addition, more complex procedures are logically broken down into sub-tasks, some of which may be common across multiple procedures. For example, a procedure for diagnosing email problems may include a sub-procedure for checking whether the workstation is able to connect to the network. Manually indicating the boundaries of each of these subtasks is certainly going to require too much user effort. Thus one research goal in our work is to consider automated approaches to the segmentation problem.

Generalization

Generalization is the process of inferring a user’s intent from a concrete trace. For instance, if the user clicks the mouse button, she may be following a link in a web browser, launching an application, or invoking a button. In a subsequent demonstration of the same task, the mouse click may occur at different coordinates, or the user may use a keyboard equivalent to perform the same function. Generalization of the two different actions (which both have the same underlying intent) identifies the similarity between the two actions. A generalized procedure is less sensitive to the exact configuration and layout of a user’s machine, and recognizes different possible ways to accomplish the same goal.

Our approach to generalization is based on version space algebra [2], a framework for efficiently enumerating the space of possible generalizations for concrete actions, and maintaining the set of consistent generalizations given one or more examples of the target action.

Alignment

Our goal is to learn robust procedures from traces generated by different experts or under different conditions. In these cases, traces may contain steps in different order, or traces in which a whole sequence of steps is missing (perhaps because those steps are not applicable on a particular system). The alignment problem is to recognize and align together subsequences of similar functionality across multiple traces. In our work, the similarity metric is based on generalization; two actions are similar if they share a common generalization. Our approach is based on an extension to hidden Markov models [4], which provide a mechanism for considering all possible alignments and iteratively selecting the locally best alignment.

Procedure representation

One challenge in programming by demonstration is to identify a sufficiently expressive yet tractable representation of the procedure that will support the user interface we wish to display to the user. Our work relies on a representation of procedures as collections of executable actions. Each action is modeled as a function that maps from the state of the system to a new state in which some action has been performed. These actions are joined together into a procedure using a probabilistic finite state machine representation. Each procedure execution is a path through this graph, and the choices at each node in the graph represent decisions made based on the information visible on the user’s screen at that time. For example, a procedure that specifies different actions to perform depending on whether a previous step failed or succeeded will examine the visible state (including the exit condition of the previous step) in order to decide which steps to follow next.

Retrieval

Learned procedures are only useful insofar as the user can retrieve them again when they are needed. Our approach to solving this research challenge involves the construction of an indexed knowledge base of procedures. Procedures can be indexed based on criteria such as the applications or application screens used within each procedure, their length, the time at which they were created or used (imagine procedures for calculating income tax, which tend to occur in early April), and keywords extracted from the commands and user interface components involved in the procedure.

Procedural dissemination can also be either implicit or explicit. A novice can simply have PW running on their machine at all times. At any point, the user can ask for assistance and PW can examine the recently recorded set of actions as the basis of a query, and retrieve procedures that begin with similar steps. Alternately, PW can signal the user that a procedure is available for a particular task based on matching novice actions to the procedure library (of course, great care must be taken to keep “suggestions” from being obtrusive or annoying).

Explicit dissemination could be either based on either a pull or a push model. A novice would pull a procedure from a repository by formulating a request, perhaps in terms of a set of goal keywords. Push-based dissemination would include desk-side support emailing a procedure to a novice to accomplish a particular task, such as a mandatory upgrade.

EVALUATION STRATEGIES

A key question in end-user programming is how to evaluate a system designed to assist end-users in their tasks. We propose several metrics, each designed to evaluate a different aspect of the system.

Learning efficiency: how much training does the system require to learn a procedure that can accurately predict the steps required to complete the task in a new situation?

Effort savings: how much effort does the system save a user in a given task situation?

Usability: what kind of training is required to author procedures in the system? Can regular end-users author and consume procedure nuggets?

CONCLUSION

We have presented the Personal Wizards project, an end-user programming system that acquires procedural knowledge by observing experts perform tasks directly in a user interface. We have outlined scenarios for which end-user programming would be useful, described a user interface for end user programming, characterized the research problems involved in creating such a system, and proposed strategies for evaluating the result.

REFERENCES

1. David Kurlander and Steven Feiner. A History-Based Macro by Example System. In Proceedings of UIST'92, pp. 99--106, 1992.

2. Tessa Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra and its application to programming by demonstration. In Proceedings of the Seventeenth International Conference on Machine Learning, pp. 527-534, June 2000.

3. H. Lieberman, ed. Your Wish is My Command: Giving Users the Power to Instruct their Software. Morgan Kaufmann, 2001.

4. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257-285, February 1989.

5. Steven A. Wolfman, Tessa Lau, Pedro Domingos, and Daniel S. Weld. Collaborative Interfaces for Learning Tasks: SMARTedit Talks Back. In Proceedings of the 2001 Conference on Intelligent User Interfaces, 2001.

