
Why PBD systems fail: Lessons 
learned for usable AI

Abstract
Programming by demonstration systems have long 
attempted to make it possible for people to program 
computers without writing code.  These systems 
typically employ artificial intelligence techniques to 
learn from user behavior in order to predict their future 
behavior.  However, while these systems have resulted 
in many publications in AI venues, none of the 
technologies have yet achieved widespread adoption. 
Usability remains a critical barrier to their success. 
Based on lessons learned from three different 
programming by demonstration systems, we present a 
a set of guidelines to consider when designing usable 
AI-based systems.
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Introduction
The goal of programming by demonstration (PBD) is to 
enable ordinary end users to create programs without 
needing to learn the arcane details of programming 
languages, but simply by demonstrating what their 
program should do.  If PBD were successful, the vast 
population of non-programmer computer users would 
be able to take control of their computing experience 
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and create programs to automate routine tasks, 
develop applications for their specific needs, and 
manipulate information in service of their goals. 
However, PBD has yet to achieve widespread adoption, 
partly because the problem is extremely difficult.  How 
can any system successfully guess the user's intended 
program out of an infinite space of possible programs?

PBD is a natural match for artificial intelligence, 
particularly machine learning.  By observing the actions 
taken by the user (training examples), the system can 
create a program (learned model) that is able to 
automate the same task in the future (predict future 
behavior).  However, unlike most machine learning 
systems that can rely on hundreds or thousands of 
training examples, users are rarely willing to provide 
more than a handful of examples from which the 
system can generalize.  This constraint makes the 
design of machine learning algorithms for PBD 
extremely challenging: they must learn accurately from 
an absurdly small number of user-provided training 
examples.

However, when designing machine learning algorithms 
for use in a user-facing system, accuracy is not the only 
important factor.  Our experience designing and 
deploying machine learning-based PBD systems reveals 
several factors that prevent users from wanting to use 
such systems.  This paper presents some of the lessons 
we have learned about making AI systems usable.

Case studies: Three systems
In the course of our research, we have developed three 
programming by demonstration systems that employ 
varying amounts of machine learning to intelligently 
predict user behavior.

SMARTedit [2] is a text editor that uses PBD to 
automate repetitive text-editing tasks.  For example, 
when reformatting text copied and pasted from the web 
into a document, one can demonstrate how to reformat 
the first line or two of text, and the system learns how 
to reformat the remaining lines.  The system is based 
on a novel machine learning algorithm called version 
space algebra, which uses multiple examples 
incrementally to refine its hypotheses as to the user's 
intended actions.

SMARTedit was later reimplemented within the context 
of a word processor product (based on OpenOffice), 
though our feature was never released.  During the 
development process, we solicited user feedback on the 
resulting system and learned that poor usability was 
the key barrier to acceptance.

Sheepdog [1] is a PBD system for learning to 
automate Windows-based system administration tasks 
based on traces of experts performing those tasks.  For 
example, based on several demonstrations of experts 
fixing the configuration of a Windows laptop in different 
network environments (static IP, dynamic IP, different 
DNS servers), the system produced a procedure that 
could apply the correct settings, no matter what the 
initial configuration was.  The system uses an extension 
to input-output hidden Markov models [4] to model the 
procedure as a probabilistic finite state machine whose 
transitions depend on features derived from the 
information currently displayed on the screen.

CoScripter [3] is a PBD system for capturing and 
sharing scripts to automate common web tasks. 
CoScripter can be used both to automate repetitive 
tasks, as well as share instructions for performing a 



task with other users.  For example, based on watching 
a user search for real estate using a housing search 
site, CoScripter automatically creates a script that can 
be shared with other users to replay the same search. 
The system uses a collection of heuristics to record the 
user's actions as a script.  A script is represented as 
human-readable text containing a bulleted list of steps; 
users can modify the program and change its behavior 
simply by editing the text.  A smart parser interprets 
each script step in order to execute the instruction 
relative to the current web page.

Design guidelines for usable AI
During the course of developing these systems, we 
conducted user studies and collected informal user 
feedback about each system's usability.  This section 
summarizes some of our observations.

Detect failure and fail gracefully.  SMARTedit's 
learning algorithm does not have a graceful way to 
handle noise in training examples.  For example,  if the 
user makes a mistake while providing a training 
example, or if the user's intent is not expressible within 
the system, the system collapses the version space and 
makes no predictions.  The only action possible is to 
start over and create a new macro.  Users who do not 
have a deep understanding of the workings of the 
algorithm, and who just expect the system to magically 
work, would be justifiably confused in this situation.

CoScripter's parser does a heuristic parse of each 
textual step; because there is no formal syntax for 
steps, the heuristics could incorrectly predict the wrong 
action to take.  When the system is used to automate a 
multi-step task, one wrong prediction in the middle of 
the process usually leads the entire script astray.  When 

this happens, we have observed that users are 
confused because the system says it has completed the 
script successfully, even though it diverged from the 
correct path midway through the script and did not 
actually complete the desired task. Few users monitor 
the system's behavior closely enough to detect when it 
has not done what it said it was going to do.

Make it easy to correct the system.  Sheepdog's 
learning system takes as input a set of execution traces 
and produces a learned model.  If the learned model 
fails to make the correct predictions, the only way to 
correct the system is to generate a new execution trace 
and retrain the system on the augmented set of traces. 
Similarly, SMARTedit's users complained that they 
wanted to be able to directly modify the generated 
hypotheses (e.g., “set the font size to 12”) without 
having to retrain the system with additional examples. 
One challenge for machine learning is the development 
of algorithms whose models can be easily corrected by 
users without the need for retraining.

Encourage trust by presenting a model users can 
understand.  The plain-text script representation used 
in CoScripter is a deliberate design chosen to let users 
read the instructions and trust that the system will not 
perform any unexpected actions.  The scripting 
language is fairly close to the language people already 
use for browsing the web, unlike the language used in 
SMARTedit where users complained about arcane 
instructions such as “set the CharWeight to 1” (make 
the text bold).  SMARTedit users also thought a higher-
level description such as “delete all hyperlinks” would 
be more understandable than a series of lower level 
editing commands; generating such a summary 
description is a challenge for learning algorithms.



Sheepdog's procedure model is a black-box HMM, and 
the only way to see what a procedure would do is to 
run it.  The system administrators who were the target 
audience for Sheepdog were uncomfortable with the 
idea that a procedure they created and sent to a client 
might accidentally wipe the client's hard disk.  A 
prediction accuracy of 99% might seem to be good 
enough for most systems; however, if that remaining 
1% could cause destructive behavior, users will quickly 
lose faith in the system.

Enable partial automation.  The naming of the 
Sheepdog system suggests that the users of the 
system are “sheep” who blindly follow the 
recommendations of the system.  Yet users often have 
knowledge about their task that is not known to the 
system, and they often want to take advantage of 
partial automation while incorporating their own 
customizations.  Early versions of Sheepdog assumed 
that all actions users performed were in service of the 
automated task, and would fail if (for example) an 
instant message popped up unexpectedly in the middle 
of the automation.  Intelligent systems should be able 
to cope with interruptions, and allow users to modify 
the automated system's behavior without derailing the 
automation.

Consider the perceived value of automation.  The 
benefits of automation must be weighed against the 
cost of using the automation.  For PBD systems the 
cost includes invoking the system, teaching it the 
correct procedure, and supervising its progress.

For example, SMARTedit was originally implemented as 
a standalone text editor, rather than integrated into 
existing editors. The cost of switching to SMARTedit for 

the sake of a quick text edit was perceived as too high; 
for simple editing tasks, users felt they could 
complete the task more quickly by hand. With 
CoScripter, several users have complained that finding 
the right script to automate a repetitive task took 
longer than simply doing the task by hand.  In both 
cases, automation was perceived to be useful only for 
long or tedious tasks, even though it could have been 
applied to a broader range of tasks.  Designers should 
take users' pain points into account when deciding 
where automation can be successfully applied.

Discussion and Conclusions
Based on our experience with several machine learning-
based programming by demonstration systems, we 
have learned that usability is one of the critical barriers 
to widespread adoption of such systems.  Addressing 
these usability problems will present new opportunities 
for the design of intelligent algorithms.
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