

Here’s What I Did:
Sharing and Reusing Web Activity with ActionShot

Ian Li
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

ianli@cmu.edu

Jeffrey Nichols, Tessa Lau,
 Clemens Drews, Allen Cypher

IBM Research – Almaden
650 Harry Road

San Jose, CA 95120
{jwnichols,tessalau,cdrews,acypher}@us.ibm.com

ABSTRACT
ActionShot is an integrated web browser tool that creates a
fine-grained history of users’ browsing activities by con-
tinually recording their browsing actions at the level of
interactions, such as button clicks and entries into form
fields. ActionShot provides interfaces to facilitate browsing
and searching through this history, sharing portions of the
history through established social networking tools such as
Facebook, and creating scripts that can be used to repeat
previous interactions at a later time. ActionShot can also
create short textual summaries for sequences of interac-
tions. In this paper, we describe the ActionShot and our
initial explorations of the tool through field deployments
within our organization and a lab study. Overall, we found
that ActionShot’s history features provide value beyond
typical browser history interfaces.
Author Keywords: ActionShot, CoScripter, web browser
history, reuse, sharing, social networking
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Algorithms, Human Factors

INTRODUCTION
People’s actions are recorded every time they browse the
web, but the page-based history that browsers store typi-
cally contains only page titles and URLs. Users rarely find
this browser history useful [5], and part of the reason may
be that typical browser histories are not sufficient for de-
scribing all the actions that a person does while browsing.
For example, typical browser histories do not include the
values that are entered into forms, nor do they document
interactions with complex AJAX-centric web sites.
Users might find browser histories more useful if they
could easily reuse portions of their previous interactions or
share relevant details about their browsing history with
others. Web sites such as del.icio.us and Magnolia allow

users to share bookmarks; Digg and Reddit allow users to
share interesting web pages that they found. However,
these web sites only allow people to share the URLs of
individual pages. If people want to share what they did on a
web site, they have to write it down manually, which can
be so tedious that they forego sharing the information.
Social scripting services such as CoScripter [8] allow users
to record and share interactions with websites, but these
tools require forethought and planning to enable recording
at the right time to capture a reusable script. Moreover,
CoScripter's one-to-all sharing model was found to deter
many users [8], who asked for finer grained control over
with whom they shared their scripts. An enhanced browser
history could solve these problems, letting users easily grab
sequences and share them with the desired audience.
In order to explore these ideas, we created ActionShot,
an extension to the Firefox web browser built on top of the
CoScripter web recording/playback platform [8]. Action-
Shot records web browsing history at the level of interac-
tions, such as entering a value into a form field, turning on
a checkbox, or clicking a button. This goes beyond typical
web history interfaces and gives users a more complete
picture of the actions they performed on every web page
they visited. ActionShot provides an interface to this his-
tory data that allows for easy browsing and searching,
where each step is described as a pseudo-natural language
string that is easy for users to interpret and accompanied by
a screenshot that allows users to see exactly how each step
was performed in the context of the page.
While we believe that users will find many uses for their
improved history data, our focus has been on two specific
uses: reuse and sharing. ActionShot’s history data can be
reused through the re-execution of recorded steps at a later
time, either by creating a script from a set of actions or
executing steps individually from the ActionShot interface.
Sharing is supported in the following ways:
• Posting an action sequence to Facebook
• Posting a summary of an action sequence to Twitter
• Sending a sequence of actions via email
• Copy-and-pasting a sequence as text
• Converting a sequence of actions into a CoScripter

script and sharing that script on the CoScripter wiki

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

723

In a think-aloud lab study and two field deployments, we
saw that users understood these sharing features and found
them to be useful in certain situations. We also conducted a
lab study to examine whether users were effective at ex-
tracting reusable sequences of actions using the ActionShot
user interface.
We begin by putting ActionShot in context with past re-
search in this area. We then describe a scenario to illustrate
how ActionShot is used and the implementation of Action-
Shot’s recording and sharing features. Next, we discuss the
evaluations of ActionShot that we have conducted, includ-
ing the field deployments inside our organization and the
lab study. We conclude with a brief description of some
possible directions for future work.

RELATED WORK
We have organized the related work into two categories:
searching and exploration of browsing history, and generat-
ing scripts for web tasks.

Search and Exploration of Browsing History
Most web browsers keep a record of browsed pages that
users can search and explore, including the very first
graphical web browser, Mosaic [1]. However, search is
limited because the history usually only consists of URLs
and document titles. Safari 4 contains a new history feature
that records both the HTML content and screenshots of
pages, which improves search and graphical exploration of
the history. Google Web History offers a similar feature
with additional trending information and improved search,
but requires the installation of the Google Toolbar. MIT's
eyebrowse1 system also tracks the web pages you visit and
shares them as a feed with other users. More recently, a
browsing history implementation called the Contextual
Web History [5] has improved search of browsing history
by using additional metadata, such as time of visit, visual
appearance, and page text. ActionShot adds the capability

1 http://eyebrowse.csail.mit.edu

Figure 1. The ActionShot interface embedded in a Firefox browser window.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

724

to record what users did within browsed pages, which al-
lows users to search by actions (e.g., find the form where I
entered my address, or find what I did after I logged in to
southwest.com).
Some studies have shown that providing screenshots of
web browsing improves recall of visited web sites [6, 11].
ActionShot’s visual history goes beyond these systems by
also providing details of the actions performed on the page.
In this respect, ActionShot is similar to the Tableau system
[3] and Nakamura and Igarashi’s visualizations of user
operation history [9]. These systems do not show visualiza-
tions for web browsing activity however, but instead for a
visual database and a graphical editor, respectively.
ActionShot is related to the macro-by-example system [7]
created for Chimera, a graphical editor for 2D illustrations,
UIs, and text. The system allows users to create macros by
selecting sequences of actions from the operation history of
the editor. Chimera did not include support for sharing ma-
cros however, nor did it include the range of visualizations
present in ActionShot.

Scripting the Web
The ActionShot system is built on top of the CoScripter
platform [8]. CoScripter allows users to generate human-
readable commands by demonstrating a sequence of web-
browsing actions. Unlike CoScripter, ActionShot does not
require the user to explicitly record a script. Instead, users’
browsing actions are continually recorded on the user’s
local disk for later retrieval and exploration.
WebVCR [2] and WebMacros [10] are systems that also
record web browser actions and require users to explicitly
indicate when a recording should begin. Unlike ActionShot
and CoScripter, both systems have internal representations
of the recorded actions that are not conducive to manual
editing or sharing with others.
Smart Bookmarks [4] gives users the ability to “bookmark”
dynamically-generated web pages by searching backwards
though recent history and identifying the actions needed to
navigate to the current page. While Smart Bookmarks lets
users save or share actions from the current browsing ses-
sion, ActionShot lets users share any actions they have ever
performed by providing a visual interface for browsing and
searching a user’s entire history.

SCENARIO
In this section, we present a scenario to illustrate how
ActionShot can be used to facilitate finding and sharing of
sequences of actions from web browsing history.
Alice has just finished serving as conference treasurer for
an annual ACM conference (PoCS). One of the duties of
the conference treasurer is to prepare a conference budget,
called a TMRF, and submit it to the ACM for approval.
This process involves submitting a web form that requests
many pages of information, including details about the
conference (number of attendees, location, description) and
details about the paper selection process (review criteria,

number of accepted papers, maximum paper length). Pre-
paring this information required Alice to gather data from
multiple websites and coordinate email amongst several
conference organizers over several days. Once ACM had
approved the submitted form, Alice was done with her du-
ties and, as she would not be serving as treasurer again,
quickly forgot many of the details of the process.
Soon after the conference was held, however, Alice re-
ceived an email from the next conference treasurer, who
asked for guidance on the ACM budget submission proc-
ess. Although Alice could have pointed the incoming treas-
urer to the URL for the budget process, she wanted to be
more helpful. Most of the information needed to complete
the process did not change significantly from year to year.
If she could pass along the information she had used to fill
out the form the previous year, she knew it could be a sig-
nificant time-saver. Unfortunately she had not had the fore-
sight to explicitly record that information because she did
not realize it would be useful in the future. Luckily, Alice
had been using ActionShot.
In order to recover her actions on the ACM web form, Al-
ice opens the ActionShot panel (Figure 1) by clicking on
the orange ActionShot icon in the browser’s status bar. The
panel appears horizontally at the bottom of the browser. On
the left side is the Session View where Alice can see her
browsing sessions organized by date. By default, the
current session is selected.
Search and Exploration
Alice starts by using ActionShot’s search feature to find
her previous interactions involving the TMRF form. In the
Search Box on the toolbar, she enters “TMRF”. The Search
View appears and shows multiple results, including:
1. go to “http://acm.org/tmrf/”
2. enter “PoCS 2008” into the “Conference name:” textbox
Alice clicks on the second result and the corresponding
action is highlighted in the History View, which is in List
Mode by default (Figure 2a). Alice scans through the de-
tailed textual description of the actions (i.e., the description
of the action, the name of the page, and the URL). To visu-
ally check that the sequence shown is correct, she can
switch the History View to the Timeline Mode (Figure 2b),
which displays thumbnail screenshots of the ACM web
site. Based on these screenshots, Alice identifies these ac-
tions as the sequence she was looking for. Alice can also
switch to Preview Mode (Figure 1) to see more detailed
screenshots of the actions, in order to further verify that
this is the correct sequence.
Reuse
Alice concludes that she has found the correct sequence of
actions for submitting a conference budget. In the History
View, she selects the start and end of the sequence. She
then clicks on the CoScripter icon in the toolbar to convert
the sequence into an executable script. The ActionShot
panel disappears and the CoScripter sidebar appears on the

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

725

left side of the browser. Alice can use the “Step” and
“Run” buttons in CoScripter to replay the script and verify
that the steps she has selected are reusable.
Sharing
After verifying that she found the correct sequence of steps
that perform the desired function, Alice goes back to Ac-
tionShot and presses the email button, which begins com-
posing a new email message with the text of the steps she
has selected as the body of the email. Because these steps
are textual and similar to human-written instructions, the
new treasurer does not need to have ActionShot or Co-
Scripter installed to make use of the instructions. Alice
sends these steps to the new treasurer, who is very appre-
ciative of Alice's help. Her use of ActionShot has saved the
new treasurer from hours of tedious labor, and moreover
begins to define best practices for future conferences.

IMPLEMENTATION
This section describes the major aspects of the implementa-
tion of ActionShot. First, we explain how the system re-
cords a detailed history of the user’s browsing actions.
Then we describe how the user interface facilitates search
and exploration of the history. Finally, we describe how
reuse and sharing are supported.

Logging web browsing actions
ActionShot records the actions users perform on web pages
by using DOM level event handlers such as 'onclick', 'on-
change', and other browser-level event handlers. Specifi-
cally, ActionShot records high-level user actions such as
clicks on links, checkboxes, list boxes and buttons, as well
as text entry into form elements. It also listens to naviga-
tional events such as entry of a new URL into the location
bar, or using the forward and backward buttons in the
browser toolbar to navigate through pages. For each action,
ActionShot relies on heuristics to extract a unique human
readable label for the target of the action. It then combines
the action, target type and target label to generate an Eng-
lish description of the action that was just performed. For

example a 'click' event that occurred on an html '<a>' target
that contains the text 'home' will be recorded as “Click the
'home' link”. For each recorded action, ActionShot stores
several types of information (Table 1).
All of the non-image data, such as the strings entered into
text fields and XPath references to the targets of any
events, are stored in a sqlite database on the user’s hard
drive. The use of a sqlite database allows quick access to
the potentially large amount of data that may be collected
by ActionShot and also obfuscates the data on the hard
drive, making it harder to find with simple text searches.

Search
Unlike regular web search, which retrieves complete web
pages in response to a keyword query, ActionShot search
retrieves matching actions, and displays them in the con-
text of the action sequences in which they were performed.
Search is performed over a user’s entire recorded history.
Search terms are matched with the title of the page, the
URL, and the description of the action. Since the descrip-
tion of the action references what the user actually did on
the page, the search is more focused and precise than
searching over page contents. For example, searching a
conventional web history for the term "PoCS" in the budget
scenario above would not have returned the budget submis-
sion form, because "PoCS" did not appear on the web page
itself. However, searching over ActionShot's history would
return the form, along with the actions taken on the form,
because ActionShot's search covers not just page content
but also the action descriptions.
Results of a search appear in reverse chronological order in
the Search View on the right side of the ActionShot panel
(Figure 1). When a user selects a result, the History View
shows the action in the context of the sequence. This is
important to give the user an idea of how the action relates
to the rest of the sequence.

History Views
A critical part of ActionShot is allowing users to select
sequences of actions in their detailed history. We created

a) List Mode

b) Timeline Mode

Figure 2. The other two modes of the History View.

Table 1. The data stored by ActionShot for each ac-
tion and what they are used for.

Usage Data stored
Description of the action

Document title

a) History View, Search, Re-
use, and Sharing

Document URL

Document: screenshot and HTMLb) Visual display in History
View Target: screenshot and HTML

Action Timestamp

Browser Timestamp

Browser ID

c) Session management in
History View

Logger ID

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

726

three different view modes, List, Timeline, and Preview, to
support different means of exploration. The user can switch
between these modes by using the History Mode buttons on
the ActionShot toolbar.
The List Mode of the History View (Figure 2a) allows us-
ers to look at the details of their history as textual descrip-
tions. This mode is similar to the Detail View of Windows
Explorer in Windows and the List View of Finder in Mac
OS X. This mode shows each action as a row with five
columns for a small icon, the description of the action, the
timestamp of the action, the page title, and the URL.
The Timeline Mode of the History View (Figure 2b) is a
visual way for users to quickly glance at the sequence of
actions. This mode shows small thumbnails of the pages
that users visited. Next to each thumbnail are small colored
icons that describe the type of actions that were performed
on the corresponding page. These icons are replicated as
small bars above the thumbnails. The following are the
four types of actions shown (and their colors):
• Form actions (green). These are actions that are related

to web forms, such as check boxes, radio buttons, input
fields, and text areas. These actions usually occur with-
in pages and do not cause a page change.

• Link actions (black). These are actions that are related
to links and submit buttons. While these actions occur
within pages, they usually cause page changes.

• Browser actions (blue). These actions are related to the
functions of the browser, such as page reloads, using
the back and forward buttons, entering a search term in
the browser search box, and entering a URL in the ad-
dress bar. These actions also cause page changes like
the link actions, but they are invoked by controls on the
browser toolbar.

• Find actions (red). These are actions related to the user
performing a text search on a web page (such as that
invoked in most PC browsers by pressing control-F).

The small bars allow users to quickly get an idea of what
happened on each page. For example, many pages will only
have a black bar meaning the user just followed a link on
the page. Pages with web forms will usually have several
green bars indicating high activity within the page.
The History View’s Preview Mode (Figure 1) accom-
plishes two things: it allows users to look at each action
visually in greater detail than the Timeline Mode and it
allows users to follow the sequence of actions in exactly
the order that they happened. This mode shows each action
one at a time, but with a bigger screenshot of the page. The
screenshot also highlights the target of the action with a
light red marker. For example, if the user clicked on the
“I’m Feeling Lucky” button on the Google home page, the
screenshot will have the button highlighted. At the top of
the Preview Mode is the Preview Control, which shows a
row of icons representing each action and two arrow but-

tons on the left and right side. Users can click on the icons
to jump to an action or click on the arrow buttons to scroll
through the sequence.
We thought that users would have difficulties determining
where sequences started and ended, so we visually sepa-
rated sequences of actions using a thick black line. For this
implementation, we used a simple heuristic that groups
actions by the host name of the site. For example, if a user
transitions from a page with the host name google.com to
another page with the host name mozilla.com, a black line
is drawn between the two actions. We also treated changes
to the sub-domain as changing the host, thus a page going
from twitter.com to search.twitter.com would be separated
by a black line.
All modes allow users to select sequences of actions, which
they can reuse and share with others. When multiple ac-
tions are selected from the History View, a short descrip-
tive summary of those actions is automatically generated
and displayed in the yellow Summary Bar at the top of the
ActionShot panel. This summary is used to describe the
selected action sequence for reuse and sharing, which are
described in the next subsection.

Reusing and Sharing Actions
Once the user has selected a sequence of actions, the user
can reuse the action by clicking on the CoScripter icon
() on the ActionShot toolbar. Upon clicking on the icon,
ActionShot displays the sequence of actions in the Co-
Scripter panel, which appears on the left sidebar of the
browser. On the CoScripter panel, the user can run the se-
quence to automate the actions. The user can also edit the
script to remove extraneous steps, add new steps, introduce
control statements such as conditionals and pauses, and ask
for user input. When the user is satisfied with the script, the
script can optionally be shared on the CoScripter wiki.
ActionShot also has three other ways of sharing history,
which are available on the ActionShot toolbar. First, the
user can email a sequence of actions to another person by

Figure 3. Example of sequences of actions shared
by a user on Facebook.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

727

clicking on the Email icon (). Clicking on the icon trig-
gers the user’s default mail client to start composing a new
message, with the subject containing the action summary
and the body containing the list of selected actions. Second,
the user can share sequences of actions on Facebook.
Clicking on the icon () will open up a Facebook page
with a form prefilled with the suggested summary and the
steps in the action sequence. The user can edit these fields
and then share them by clicking on the “Post” button,
which causes the sequence of actions to be posted to her
Facebook wall (Figure 3). The last method of sharing is
sending an update of what the user did on Twitter by click-
ing the Twitter button (). In this method of sharing, the
Twitter web page is opened and the action summary is
placed in the “What are you doing?” text box.

AUTOMATIC SUMMARIZATION OF WEB ACTIONS
To facilitate sharing of web activity, we implemented a
simple summarization algorithm that picks key words from
the selected sequence of browsing actions and generates a
short descriptive summary.
The summarization algorithm works as follows. A sum-
mary is generated by filling out a template of the form
"VERB NOUN on SITE". Given as input the actions se-
lected by the user, the algorithm fills in the slots in this
template using several heuristics. The SITE portion of the
template is constructed by examining all page titles across
the selected actions, tokenizing them into individual words,
and then selecting the most common word. This heuristic is
based on the observation that most sites tend to put their
brand name in page titles (e.g., "tomato diseases - Google
Search"). Moreover, this brand identifier will tend to stay
consistent across all pages at the same site (e.g., "tomato
diseases - Google News"). Therefore if the browsing his-
tory includes multiple pages at the same site, the site's
name will tend to occur more frequently.
To fill in the VERB and NOUN portions of the template,
we make the observation that the textual description for
each action contains words that characterize the activity.
Specifically, we focus on the label used to identify the tar-
get of each action (e.g., the text of a link, the label of a but-
ton, or the caption for a text field). This label often conveys
content-rich information about the user's task.
We use a part-of-speech tagger to extract only the two most
salient words across all target label words in the selected
actions. Using the POS tagger, each label word is classified
according to its part of speech. The VERB (NOUN) slot in
the summary template is chosen as the verb (noun) that
occurs most frequently in the set of target-label words.
When multiple words all occur with the same frequency,
then one of those most frequent words is selected at ran-
dom. If no verb is found, the system chooses the default
verb "Browse". If no noun is found, that slot is omitted
from the template.

While simple, this summarization algorithm performs sur-
prisingly well. We have tested it informally on our own
ActionShot histories; Table 2 shows examples of some of
the summaries generated on some of the activities drawn
from our histories. For example, an activity performed by
one of the authors was to change a meeting room reserva-
tion using a web-based conference room scheduling tool:
• go to "b2126.XXX.XXX.com"
• click the "Reservations" link
• click the "John Smith - MyProject" button
• click the "b_lb_open.gif" button
• enter "Mary Jones" into the "Host:" textbox
• enter "MyProject weekly meeting" into the "Purpose:"

textbox
• click the "b_lb_save.gif" button
• click the "Mary Jones - MyProject weekly meeting"

button
• click the "b_lb_open.gif" button
Given these actions, our summarization algorithm pro-
duced the following summary: "Meeting reservations on
RoomWizard". The words "meeting" and "reservations"
were drawn from the labels of the buttons being clicked,
and the name RoomWizard was the most frequently-
occurring title word across all pages in this task.

 Table 2. Representative sequences of web brows-
ing actions (left) and their automatically-generated
summaries (right).

Web task Auto-generated summary

Reserve a conference room using
a web-based scheduler

Meeting reservations on
RoomWizard

Look up subway schedules for the
Washington, DC Metro

Browse travel on Metro

Search for flights between San
Jose and Washington, DC

Find flights on Orbitz

Download papers to review from
IJCAI website

File view on Twenty

Register for the CHI conference Continue registration on CHI

Accept an invitation to connect on
LinkedIn

Accept profile on LinkedIn

Manage your followers on Twitter Follow user on Twitter

Get a summary of the past year's
401k activity

Retrieve statement on Fidel-
ity

Buy a discount lift ticket to a local
ski resort

Lift ticket on SnowBomb

Find a nearby Indian restaurant on
Google Maps

Browse search on Google

Assign papers to reviewers on the
GHC 2009 submission website

Suggest assignments on
Submission

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

728

Though we have not formally evaluated the performance of
the summarization algorithm, anecdotal evidence indicates
that the simple algorithm works reasonably well in prac-
tice. The generated templates are often meaningful and
convey some sense of the actions being performed. Table 2
shows a representative set of tasks performed on the web
and their summaries, taken from one of the authors' per-
sonal browsing history. Because summaries are only used
as suggestions and the user always has the option of editing
the summary before it is posted, summaries do not need to
be completely accurate. Our aim is not to perfectly describe
user behavior, but to suggest text that inspires the user to
write something more descriptive, and reduces the over-
head of sharing. Future work will investigate more sophis-
ticated summarization algorithms that more accurately cap-
ture users' intents while browsing the web.

EVALUATION
Our primary evaluation of ActionShot has been through
two field deployments within our organization and a lab
study to examine users’ ability to extract a set of reusable
actions that might be shared with someone else. We also
conducted a preliminary think-aloud study with four sub-
jects from our organization to ensure that the software was
usable before deployment. Through this study we found
and corrected many usability problems. Despite these prob-
lems, overall most users found the tool potentially useful
and expressed interest in using the tool once it was avail-
able for general use.

Field Deployments
The first deployment of ActionShot was to six participants
in our immediate research group, who used ActionShot for
3 months. This first deployment was very informal, but
these participants have contributed a large number of bug
reports and feature requests from their use of the tool.
The second deployment was more formal, and included 16
participants from a variety of locations throughout our or-
ganization. This deployment began with a pre-survey to
understand how our participants currently make use of
various browser features, such as bookmarks and history.
After two weeks, we again asked our participants to com-
plete a post-survey. Participants that responded to both
surveys were rewarded with a small gift.
Since the second deployment, we have made ActionShot
available throughout our organization. So far ActionShot
has been downloaded 669 times and appears to be in con-
tinuous use by at least 30 users.
Deployment Results
Users during both the first and second deployments found
ActionShot to be useful. Of the 16 users in the second
deployment, only 7 responded to the survey. One of the
seven encountered a bug in installation that prevented Ac-
tionShot from working, and his results have been excluded.
Of the remaining participants, 4/6 rated ActionShot as use-
ful. Of the two subjects that did not find ActionShot useful,
one reported being more comfortable with current book-

marking and history tools and the other apparently ex-
pected the tool to automatically suggest reusable scripts.
We heard several anecdotes from users about how Action-
Shot enabled them to share their web activity with others.
One common use was to create smart bookmarks (repro-
ducing the series of actions required to navigate to a page
without a stable URL). ActionShot users reported creating
these bookmarks from activities that were not recent how-
ever, not just immediately after the task was performed as
supported by Hupp's Smart Bookmark [4] system. Our us-
ers reported using ActionShot to create and share smart
bookmarks for tasks such as retrieving a company's balance
sheet and accessing a wedding registry.
Other users reported using ActionShot as a means to help
colleagues use complex web-based systems. In one exam-
ple, two users took charge of an academic journal and had
to manage its complex reviewing system. One user used his
recorded history to help the other complete processes that
the first user had already figured out. The motivating sce-
nario we presented earlier in this paper (of re-finding in-
structions for submitting a budget to the ACM and sharing
it with another user) was an actual scenario experienced by
one of this paper's authors. Another user also reported a
similar experience with a complex web-based process. This
user had submitted a corporate naming request, which is a
long and involved process, and promptly banished it from
his mind. Sometime later, a colleague asked for help with
this process, and the user was able to search his ActionShot
history, recover his actions, and provide assistance to the
colleague based on his recorded history.
Another use for ActionShot was to replay previous behav-
ior. One user reported using ActionShot to retrace his steps
on a website where visited links were not visually differen-
tiated. Another user reported using ActionShot to replay a
series of actions that triggered a bug in the software she
was developing, in order to reproduce that bug for a col-
league.
A third use for ActionShot was to retrieve information
from previous browsing sessions. One user reported using
an ActionShot screenshot to retrieve the confirmation
number for a car rental, which was no longer available on
the car rental web site. Another user reported recovering an
account number that had been entered into a field. This
particular user was away from home and finding the num-
ber in ActionShot allowed him to complete a transaction
that might otherwise have had to wait a week or more.
Deployment Discussion
Our users made several suggestions to improve the visuali-
zations used in ActionShot, many of which were addressed
prior to the subsequent deployments. Our think-aloud users
found the small colored bars that represent classes of ac-
tions and thick black lines that separate sequences in the
History View to be particularly confusing. We improved
the colored bars by adding explanatory tooltips, and we

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

729

improved the algorithm that determines when to draw black
lines to make it more predictable.
We saw that users made use of the various sharing options
available in ActionShot, but one user asked for more. Our
organization has an internal Twitter-like service used by
employees to share confidential status updates behind the
firewall. This user asked for ActionShot to integrate with
this service so that he could use it to share instructions for
building, testing, and deploying software with his col-
leagues. This also suggests a different usage model than we
had anticipated, as this user wanted to tweet literal action
descriptions instead of our auto-generated action summary,
like the feature we created for use with Twitter.
Although we saw that users were able to reuse actions from
their history, in some cases we found that ActionShot could
make reuse easier. For example, the user might select a
sequence of actions for reuse that was preceded by multiple
steps of trial & error navigation through a web site. Such a
sequence will not stand on its own, as it is missing the
initial steps to get the browser in the correct context to
execute the sequence. We implemented a solution that
prepends a script operation to go to the URL of the first
step in the sequence, which we found is often sufficient.
Other feedback on reusability suggests interesting direc-
tions for future work. One user suggested providing an
algorithm to automatically recognize the boundaries of a
task, given one of the steps contained within that task. An-
other noted that within the time range that contained the
actions he wanted to share, both relevant and irrelevant
actions were included; he recommended better algorithms
for intelligently filtering out the irrelevant actions. Yet an-
other user desired more precise control over ActionShot's
recording toggle, suggesting that we be able to turn on/off
recording on a site-by-site basis using an interface similar
to ad blocking software.
Another aspect of reusability is generality. One user found
that the history recorded by ActionShot was too specific
for his needs. Rather than wanting to play back the exact
same actions he had performed previously, he was looking
for a tool that could help him create a general script to ac-
complish a range of similar tasks. An interesting direction
for future work could be to use similar ActionShot re-
cordings as input to a machine learning algorithm to pro-
duce the generalized script that this user wanted.

Lab Study of Extracting Reusable Actions
In addition to the think-aloud and field deployment studies,
we conducted a lab study to isolate and evaluate a user’s
ability to extract reusable actions with ActionShot. We feel
that extraction of reusable actions is particularly important
because it is a necessary first step for sharing web activity
with others. Our hypothesis is that for tasks the user has
already done, extracting reusable actions in ActionShot
will take less time than recording those actions from
scratch in CoScripter. In this study, we use CoScripter as a
baseline for judging the effectiveness of ActionShot.

An important goal for this study was to ensure that our task
was not easier than other extraction tasks that an Action-
Shot user might perform in the real world. To meet this
goal, it was important to consider the steps that an Action-
Shot user must complete when extracting reusable actions
and then ensure that our task made each sufficiently diffi-
cult. The steps necessary for extraction are:
• Identify the relevant steps to extract from the log.
• Fix the extracted steps by removing extraneous ac-

tions, which might be due to navigation errors or other
mistakes.

• Test the modified steps with the current version of the
web site, because the site may have changed since the
steps were originally recorded.

Note that it is also common for users to remove sensitive
information, such as credit card numbers, and perhaps gen-
eralize steps using CoScripter’s personal database feature.
Note that this step is not unique to ActionShot however, as
CoScripter users must also address sensitive information
when authoring scripts.
Based on these steps, to create a realistic study we needed
to make sure that it would not be trivial to find the relevant
steps in the log and to ensure that some extraneous actions
appeared within the relevant steps that the user would need
to fix. For this study, we have chosen not to increase the
difficulty of our extraction task by changing the test web
site between recording and testing.
Method
This study used a three phase design. In the first phase sub-
jects performed four web browsing tasks, in the second
phase they received training on both CoScripter and Ac-
tionShot, and in the third phase they were asked to create
scripts to automate tasks from the first phase using both
CoScripter and ActionShot. Our goal is to compare the
time needed to create a script in each of the tools. This
study uses a between-subjects design.
The four web browsing tasks in the first phase were de-
signed to familiarize the subjects with these sites and to
generate some browsing history within ActionShot for use
later in the study. The first 3 tasks involved visiting three
different web sites to shop for shirts (threadless.com, these-
lectseries.com, and typetees.com in that order). The final
task required users to create a simple blog entry on
tumblr.com.
The design of this phase increases the difficulty for Ac-
tionShot users later on in the study. We chose the first three
tasks to be very long and very similar. Scrolling was re-
quired to see all of the actions from each task in Action-
Shot’s list view, and the similarity between tasks made it
difficult to distinguish which of the tasks were being seen
at any one time. We also chose tasks in which we believed
users were likely to make mistakes in phase one, which
would create extraneous actions to remove later. We felt
errors were likely because each of our tasks had several

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

730

unique steps that are confusing when using the sites for the
first time, especially back-to-back. Many, but not all, of our
subjects made errors when using these features of the sites.
In the second phase of the study, subjects were given brief
demonstrations of the features of both CoScripter and Ac-
tionShot and then asked to create scripts for the tumblr.com
task from phase one in both tools. Subjects were allowed to
ask questions throughout the demonstration and the train-
ing tasks to ensure that they were comfortable with all of
the important aspects of both tools.
The third phase required subjects to create scripts for two
of the tasks in phase one (theselectseries.com and type-
tees.com) using CoScripter for one site and ActionShot for
the other. We counter-balanced the order in which the sites
were presented and the tool used with each site, giving us
four conditions to which subjects were randomly assigned.
During the third phase tasks, we recorded the time needed
to “create” the script, to “test” it, and the total time. We
chose this breakdown in an attempt to quantify behavioral
differences between the tools. We expected users to spend
more time creating their scripts in CoScripter compared to
ActionShot, because CoScripter users must perform every
step of the task to record it whereas ActionShot users must
only identify the relevant set of actions in their history and
then remove any extraneous actions that they can identify.
We also expect ActionShot users to take longer when test-
ing their script because they have never seen the script run
against the real page and they are more likely to find errors
that need to be corrected. For both conditions, the begin-
ning of the test phase was defined as navigating to the be-
ginning of the script and pressing either the “run” or “step”
buttons in CoScripter that begin script execution. Users
were instructed to test their scripts after creation; however,
one subject declined to test their script in the CoScripter
condition.
Participants
We recruited 14 participants from our research lab. Most
had prior programming experience and 11 had used Co-
Scripter in some way previously. Only 8 of the CoScripter
users had attempted to create a script using CoScripter, and
none of the participants had any experience with Action-
Shot. Participants were compensated with an $8 lunch cou-
pon for our research lab’s cafeteria.
Results and Discussion
The results of the study are shown in Table 3. We found
that ActionShot was significantly faster than CoScripter in

creation time (p < 0.01) and total time (p < 0.05). There
was no significant difference between testing time when
using CoScripter or ActionShot. The large difference in the
average testing time for the two tools may be due to two
large outliers in the ActionShot condition.
It is important to ask whether the difficulty of our task was
realistic. In terms of selecting actions, we believe our de-
sign was a partial success. We did see many users browse
the sessions unsuccessfully, but most spent very little time
browsing and instead searched using the site url as a key-
word. This worked well for the subjects that tried it, be-
cause there was only one set of actions for each site in the
log. We believe that search will often be an effective means
of finding relevant actions, however its effectiveness will
depend greatly on how often a user visits the site for which
they are creating a script.
As we had hoped, users made mistakes in their phase one
tasks, which increased the difficulty of their later phase
three tasks. Users not only made errors on the unique steps
that we had expected to be confusing, but also made other
errors, such as by skipping over a required field during data
entry. Skipping a field added extra button presses and cor-
rective text entry actions into the recorded stream. This
suggests that our design worked in most cases, and that
dealing with extraneous actions is reflected in our results.
Overall, we found that users of ActionShot are more effec-
tive at extracting a reusable set of interactions compared to
the baseline of using CoScripter to create a new script from
scratch. This result might change if search cannot be used
to rapidly identify the correct actions or if the web site
changes. In the future, we plan to improve our search func-
tion, which already works in many situations, and we will
investigate how we might adapt extracted steps to match a
changed web site.

DISCUSSION
Security and privacy are important issues for ActionShot to
address, and we have spent time considering how to effec-
tively balance the need for privacy and security with the
usability of the ActionShot tool. Our current design favors
usability and relies heavily on the user to manage the secu-
rity of their data. ActionShot does not send any of its
recorded data across the network unless the user explicitly
shares actions, so its data is secure provided the physical
machine is kept secure. This is hard to guarantee however,
as machines may be stolen, hacked remotely, or shared
temporarily with another user.
One potential solution for preserving security and privacy
is to encrypt ActionShot’s data on the hard drive and also
require a password to access the ActionShot panel. We
have not yet implemented this feature, in part because we
do not have a solution for encrypting the sqlite database
and in part because we are concerned about the usability
impact of requiring users to take an extra step to access
their history data. We will explore this further in the future.

Table 3. Average completion times, in minutes, for
the reusable action lab study.

 CoScripter ActionShot Significance

Creation Time 3:41 1:32 F[1,13]=34.05
p < .01

Test Time 1:32 2:21 F[1,13]=3.171
p = 0.0983

Total Time 5:13 3:53 F[1,13]=4.985
p < .05

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

731

We are also considering methods for filtering sensitive
information from the recorded data, which would obviate
the need to password-protect the ActionShot panel. For
example, ActionShot already does not record any values
entered into HTML password fields. We have considered
using data detectors to extend this capability to other fields.
For example, we could use a reliable credit card number
data detector to automatically prevent credit card numbers
from being recorded. The challenge is that any detector is
unlikely to be perfect, resulting in some sensitive data be-
ing recorded. We could also allow users to specify whether
certain form fields should be recorded, which could be re-
used every time the user revisits that web page. We could
also allow users to block recording on entire web sites, for
cases where visiting the site at all is sensitive.
The quality of ActionShot’s historical information depends
greatly on the recorder, which must detect actions and gen-
erate high quality labels for the interactive elements. This
becomes especially difficult for pages that use complex
HTML and JavaScript. ActionShot relies on CoScripter’s
recording infrastructure, which can detect any action on a
standard HTML form element and often generates high
quality labels. Some complex web pages use custom wid-
gets however, and these widgets are not always recorded
correctly. CoScripter was recently extended to support the
popular Dojo Toolkit, allowing it to record sites created
using that toolkit. In principle it could be extended to sup-
port other toolkits as well, such as the Google Web Toolkit.
We have a number of plans for the future of ActionShot.
First, we are publicly releasing ActionShot with a new
name (CoScripter Reusable History) through the CoScrip-
ter web site:
http://coscripter.researchlabs.ibm.com/

We hope that this public release will allow us to further
investigate the usefulness of ActionShot’s improved web
history across a much wider range of users.
We would also like to improve several existing features of
ActionShot. For example, the visualization of activity tak-
ing place across different tabs. The search feature could
also be improved, perhaps by adding page content into the
search index. We are also interesting in adding new func-
tionality to ActionShot, such as a feature that suggests
scripts based on the user’s current and previous activities.
We also plan to investigate other applications for enhanced
browsing history that might make ActionShot even more
useful. Some ideas include: helping users track how their
time is spent; predictive auto-completion of web actions
based on historical activity; inferring higher-level descrip-
tions of behavior, to enable users to reflect on their past
activity; and automatic identification and suggestion of
potential scripts based on repeated user activity.

CONCLUSIONS
We presented ActionShot, a system for continuously re-
cording user actions in the web browser and capturing

them as a fine-grained history of browsing behavior. Ac-
tionShot demonstrates three different ways that this de-
tailed history can be useful to users. First, ActionShot pro-
vides visualization interfaces to explore and search through
the user’s detailed history for sequences of actions. Second,
ActionShot allows reuse of actions from the history; a lab
study showed that subjects were able to locate relevant
action sequences and convert them to a reusable CoScripter
script faster than using the original CoScripter interface.
Finally, ActionShot goes beyond Del.icio.us, Google Web
History, and other social bookmarking sites by allowing
users to share what they did on web pages; anecdotal re-
ports from our field deployments have found that Action-
Shot helps users' share their web activity with others.

ACKNOWLEDGMENTS
We would like to thank all of the participants in our user
studies and the reviewers for their helpful comments.

REFERENCES
1. Andreessen, M., NCSA Mosaic Technical Summary. Na-

tional Center for Supercomputing Applications, 1993.
2. Anupam, V., Freire, J., Kumar, B., and Lieuwen, D., Au-

tomating Web navigation with the WebVCR. Computer
Networks, 2000. 33(1-6): 503-517.

3. Heer, J., Mackinlay, J.D., Stolte, C., and Agrawala, M.,
Graphical histories for visualization: Supporting analysis,
communication, and evaluation. IEEE Transactions on
Visualization and Computer Graphics, 2008. 14(6): 1189-
1196.

4. Hupp, D. and Miller, R.C. Smart Bookmarks: Automatic
Retroactive Macro Recording on the Web, in Proceedings
of UIST. 2007: 81-90.

5. Jin, J., Won, S.S., and Hong, J.I. Contextual web history:
using visual and contextual cues to improve web browser
history, in Proceedings of CHI. 2009: 1457-1466.

6. Kaasten, S., Greenberg, S., and Edwards, C. How People
Recognize Previously Seen Web Pages from Titles,
URLs, and Thumbnails, in Tech Report 2001-692-15, De-
partment of Computer Science, University of Calgary.
2001

7. Kurlander, D. and Feiner, S. A history-based macro by
example system, in Proceedings of UIST. 1992: 99-106.

8. Leshed, G., Haber, E., Matthews, T., and Lau, T. Co-
Scripter: Automating & Sharing How-To Knowledge in
the Enterprise, in Proceedings of CHI. 2008: 1719-1728.

9. Nakamura, T. and Igarashi, T. An application-
independent system for visualizing user operation history,
in Proceedings of UIST. 2008: 23-32.

10. Safonov, A., Konstan, J.A., and Carlis, J.V. Beyond
Hard-to-Reach Pages: Interactive, Parametric Web Mac-
ros, in Human Factors and the Web. 2001

11. Woodruff, A., Faulring, A., Rosenholtz, R., Morrison, J.,
and Pirolli, P. Using Thumbnails to Search the Web, in
Proceedings of CHI. 2001: 198-205.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

732

