Find This For Me: Mobile Information Retrieval on the
Open Web

Ifeyinwa Okoye Jalal Mahmud Tessa Lau Julian Cerruti
Institute of Cognitive IBM Research — IBM Research — IBM Argentina
Science Almaden Almaden Ing. Butty 275 -
Univ of Colorado at San Jose, CA 95120 San Jose, CA 95120 C1001AFA
Boulder jumahmud @ tessalau@us.ibm.com Buenos Aires,
Boulder, CO 80309 us.ibm.com Argentina
USA jeerruti@ar.ibm.com

okoye@colorado.edu

ABSTRACT

With all the information available on the web, there is a
growing need to provide mobile access to this information
for the large, growing population of mobile internet users.
In this paper, we propose a solution to the problem of open
web mobile information retrieval, by conducting a dialogue
with the user over a simple text-based interface. Using tech-
niques from NLP, web page analysis, and information ex-
traction, our approach automatically navigates web sites on
the user’s behalf and extracts specific information from those
sites to present to the user textually. Empirical evaluation
shows that our approach to open web information retrieval
is feasible, and a qualitative evaluation validates that such a
system meets user needs for mobile information access.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

General Terms
Algorithms, Design, Human Factors, Experimentation

Author Keywords
NLP, information extraction, information retrieval, mobile
web

INTRODUCTION

Web browsing from a mobile phone continues to be chal-
lenging. The web is largely designed to be used from a PC,
not a mobile device. Accomplishing information tasks from
a mobile device can be difficult due to screen size limita-
tions, slow page loads, and the need for excessive scrolling
and navigation. Yet in many parts of the world, such as de-
veloping countries, mobile phones are the only means peo-
ple have of connecting to the internet. These users typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1UI 2011, February 13 - 16, 2011, Palo Alto, California.

Copyright 2011 ACM 978-1-60558-515-4/10/02...$10.00.

don’t have smart phones or data plans. How can we provide
access to information for these users?

One of the main motivators for web access on mobile is for
information retrieval tasks. For example: which LCD TV
should I buy? what is the weather forecast for next week?
can I get Green Day’s latest album for less than $10? Our
goal is to provide a mobile interface for these types of infor-
mation retrieval tasks that is based on dynamically crawling
and scraping the open web — the vast network of web sites
designed solely for human consumption through a desktop
browser.

Information retrieval tasks can be quite complex, including
fetching information from multiple sites, collecting informa-
tion about multiple items, and making comparisons between
them. However, if we reduce these complicated tasks to their
fundamentals, one basic building block for information re-
trieval consists of fetching a single property about a single
item, such as the weather in Denver, the ISBN of the book
The Iliad, or the price of a Samsung 40” LCD TV.

Furthermore, in our observations, we discovered that a ma-
jority of users’ information retrieval needs fell into this sim-
ple item-property model. Therefore our approach has fo-
cused on solving this specific type of information retrieval
over the open web.

Beginning with a natural-language query from the user, we
find information about the specified item from a specific
website, engage in a multiple-choice dialogue with the user
to refine her query, and finally extract and present the item’s
property to the user. Figure[I|shows one sample usage sce-
nario of our system.

Our approach combines natural language processing tech-
niques, search automation, and information extraction tech-
niques to solve the item-property retrieval problem.

In this paper, we make the following contributions:
e An algorithm for item-property information retrieval on

the open web, consisting of the following steps: NLP
for extracting an item and a property from user requests;

user: get the price of a 42” lcd tv

system: please enter the website, for example:
http://www.foo.com

user: http://www.compusa.com

system: I have found more than one option on the
web-page. Which one would you like?

1: LG 42LD450 42” Full HD 1080p LCD HDTYV - 1080p,
1920x1080, 16:9, 100000:1 Dynamic, 4ms, USB, 2 HDMI
2: Panasonic TCP42C2 Viera C2 Series 42” Plasma HDTV
- 720p, 1024 x 768, 16:9, 600Hz, 2000000:1 Dynamic, 2
HDMI

3: LG 42LD550 42” LCD HDTYV - 1080p, 1920 x 1080,
16:9, 120Hz, 150,000:1 Dynamic, USB, 4 HDMI

4: LG 42LD520 42” LCD Full HDTV - 1080p, 1920 x
1080, 16:9, 100000:1 Dynamic, 120Hz, 2.4ms, 3 HDMI

5: Panasonic TCL42U22 Viera Link 42” Class LCD HDTV
- 1080p, 1920x1080, 16:9, 20000:1 Dynamic, 3 HDMI
user: 1

system: Result:

#1 Price: $599.99

#2 List Price: $749.99

#3 CompUSA is not responsible for typographical or
photographical errors. Prices and specifications are subject
to change without notice.*Price after manufacturer mail-in
rebate. Restrictions apply.

Figure 1. Example interaction with our system

search form detection and automation; search result de-
tection; and information extraction to return the desired

property;,
e An implementation of our algorithm;

e Empirical evaluations of each of the components in our
implemented system; and

e A qualitative user study that validates our approach.

The rest of the paper is organized as follows. We begin with
an overview of related work and how our work compares
in context. We then detail the problem of mobile informa-
tion retrieval, including the approach we have chosen. Next,
we describe the main building blocks of our algorithm, in-
terleaved with empirical evaluations of each part. We then
present the results of a user study that validate the approach
we have taken with users in the developing world. Finally,
we conclude with a discussion of future work.

RELATED WORK

Our work is related to research on question answering, inter-
active information retrieval systems, and intelligent agents
for mobile.

Question Answering and Interactive Information Retrieval

Systems
There exist a large number of question answering and inter-

active information retrieval systems [[16} 6L |7, 4, /18]. SmartWeb

[16] combines intelligent question answering with compos-
able semantic web services to provide a multi-modal user

interface for the Web. Google 411 [6] is a speech recog-
nition based business directory assistance service which al-
lows searching and placing a call to the local businesses from
a mobile phone. Google SMS [7] allows searching for and
retrieving specific types of information from a mobile phone.

These and many more question answering and information
retrieval systems work with pre-existing semantic web ser-
vices. These web services are typically annotated with their
semantic content and thus finding the appropriate web ser-
vice for a task is straightforward. However, the number of
web service providers that provide web service APIs to their
information is relatively small. Therefore, people often need
to retrieve information from websites that do not provide
a web service APIL. In contrast to existing approaches, our
solution attempts to solve a more general problem, i.e. re-
trieving information from any website. Our problem is more
difficult because we have to find information from complex
webpages which are not semantically labeled.

IBM’s DeepQA [4] is a question answering system which
uses natural language processing, information retrieval, ma-
chine learning, knowledge representation and reasoning, as
well as massive parallel computation to solve the question
answering problem. While DeepQA attempts to solve the
general QA problem using a preprocessed data set, our work
focuses specifically on a very small subproblem of QA and
aims to deliver realtime results from the live web. RIA [[18]]
is an interactive context-sensitive information retrieval sys-
tem for large and complex data sets. It uses natural language
dialogue, context sensitive information retrieval, and multi-
modal output generation to perform the information seeking
task. RIA presents information from a pre-existing dataset,
compared to our approach which works over the open web.
However, we would like to explore integrating more features
from systems such as RIA and DeepQA into our own work
to improve our accuracy and coverage.

Intelligent Agents for Mobile

HP’s SiteOnMobile [14] allows end users to create “task-
lets” to scrape data from websites and make it available via
SMS or voice calls. Similarly, CoCo [[10] lets users create
scripts to automate web tasks and invoke them from a mobile
interface. However, both of these systems require the user to
have previously instructed the system how to do the task. In
contrast, our system doesn’t require any pre-programming
or the existence of pre-recorded scripts. Siri [[13] is an intel-
ligent assistant for the iPhone that allows delegation of cer-
tain preprogrammed tasks such as making restaurant reser-
vations, getting movie tickets, and hailing a taxi. It works
with a number of web service providers to deliver answers
and actions from them. Like the QA and information re-
trieval systems above, Siri relies on an existing set of web
services to provide its functionality, and cannot be extended
to open web information retrieval.

MOBILE INFORMATION RETRIEVAL

Preliminary study
We conducted a preliminary study to explore what sort of
tasks users would feel comfortable delegating to a system.

For this, we set up a Wizard of Oz study where users thought
they were directly interacting with a system via Internet Re-
lay Chat (IRC). Twelve software developers in Argentina
were recruited as study participants. The users were told to
ask the system to perform any web task and we had someone
posing as the system and doing the tasks. In all, we collected
a total of 51 tasks.

The tasks ranged from basic questions (date and argentinian
time for Argentina vs. Greece?) to information synthesis
(send me the state of my current ebay bids) to even more
complicated actions (write on my Twitter “I’m going to Tan-
dil”).

Overall, 54% of the tasks were information retrieval tasks
(e.g., what is the weather forecast for next week in Almaden),
while 46% were requests to take action (e.g., forward my
work phone to my cell). Given that more than half of the
tasks required information retrieval, we decided to focus our

efforts on providing a system for mobile information retrieval.

The information retrieval problem

Information retrieval tasks can be relatively complex. For
example, a user might want to plan a fishing trip for the up-
coming weekend, deciding between multiple locations based
on their weather forecasts, recent rainfall, and access to fish-
ing spots.

Because information needs such as these typically span mul-
tiple websites, one of the goals of our work is to provide a
general-purpose system that can work across arbitrary sites
on the open web. We specifically do not want to limit our
approach to working only with sites that provide semantic
web interfaces, even though that would make the problem
we are solving significantly easier. Moreover, the propor-
tion of websites providing semantic web interfaces is signifi-
cantly lower in the developing world. Therefore we have for-
mulated our approach to work over the open web, websites
designed for use by people using standard web browsers.

While many information needs are complex, one of the fun-
damental building blocks for solving those needs consists of
one basic operation: fetching a single property about a sin-
gle item from a specific website. Therefore, we designed our
system to solve this specific information retrieval task. Fur-
thermore, We observed in our preliminary study that many
of the information retrieval tasks could in fact be formulated
as an item-property retrieval problem.

Item-property information retrieval

Finding information about a specific item is generally done
using web search. Therefore, our algorithm for item-property
retrieval is based around using the web search built in to spe-
cific websites to retrieve the desired information. Although
there are other means to find item information without using
search, such as browsing the site’s taxonomy, this taxonomic
information would either have to be known to the system, or
collected from the user in an interaction. The former requires
more domain-specific information to be provided to the sys-
tem, and the latter requires undue interaction on the user’s

part. So we decided to rely only on the website’s search
functionality.

At a high level, our algorithm follows the following approach:
given a user’s information query, determine which website to
use, automatically interact with that website using its search
functionality to find the desired item, dialogue with the user
to narrow down the search results if necessary, and then ex-
tract the desired property of the item on the item’s detail page
to return to the user.

We chose to use NLP techniques to interpret the user’s query,
in order to make the interface as general as possible. A
menu-driven interface would have limited us to only the set
of concepts designed into the system, rather than generaliz-
ing to arbitrary concepts defined by users. Our NLP-based
algorithms are described in more detail in the Natural Lan-
guage Query Processing section.

Currently we explicitly ask the user to specify which website
to use to satisfy their information need. Alternatively, we
could ask the user to specify where they wanted to search,
e.g. “Best Buy”, and then do a Google search for the term
and use the top-ranked website as the starting point for our
search. Or, we could remember the last-used website and
use it for future queries. Another way could be suggesting a
default website on which to run the query, and let the users
override this if they wish.

Given a search term and a website, the Search Form De-
tection subsection below describes how we locate the search
form and automatically interact with it to conduct the search.
The user’s search term is frequently not specific enough to
describe exactly the item they want. For example, they might
say “led tv” instead of “LG 42L.D450 42 Full HD 1080p
LCD HDTYV - 1080p”. In these cases, websites typically re-
turn a list of search results rather than taking the user directly
to the item detail page for their item. Our approach to han-
dling this situation is to detect the search result page, extract
summaries of each of the results, and present these options
to the user. The Search Result Detection subsection below
describes our approach in more detail.

Finally, after the user has selected an option, the system
automically navigates to the detail page for that item and
tries to extract the desired property (e.g., price, temperature,
ISBN) for that item. For this task we use a variety of infor-
mation extraction heuristics, described in the section Infor-
mation Extraction.

NATURAL LANGUAGE QUERY PROCESSING

In this section we discuss how we used natural language pro-
cessing (NLP) as a first step towards helping a user retrieve
information on the web. We used NLP to help us figure out
what exactly the user was trying to accomplish given the
user’s task description i.e we wanted to understand the se-
mantics of a user’s query. FrameNet [2] is a logical resource
to use for such queries since the frame name describes what
the main concept is and the frame elements indicate the se-
mantic role for each lexical unit in the user’s query. How-

ever, FrameNet does not cover all the predicates in English
and FrameNet’s accuracy in assigning the lexical units in a
sentence to the right frame element is less than 60% for their
own data set [3]]. It is very likely that the accuracy will go
further down when using a different data set which their clas-
sifier wasn’t trained on. Hence, due to the coverage and ac-
curacy limits of FrameNet, we did not use FrameNet for our
task. Instead of using the FrameNet roles, we used the three
basic roles of item, property and web location. Another in-
sight from the preliminary study was that most users tended
to not include the web location as part of their task descrip-
tion so we explicitly ask them for the web location. Hence
our work in this section was geared towards deducing only
the item and property from the task description.

We used a dependency parser to first understand how the
lexical units in the sentence relate to each other and then
applied several heuristics to determine the item and property,
given the dependency parse of the user’s task description.
We used the Stanford Parser [9]] because it is freely available,
easy to install and use, is continually being updated, and has
a very active community.

To extract the item and the property, we do the following (in
order):

1. We replace quoted strings with a dummy non-quoted string.

So, who is the author of “What is the what” will be re-
placed with who is the author of QuotedString.

2. We parse the string using the Stanford Parser.

3. We find the head noun in the parsed string. From our pre-
liminary study described above, we found that most of
what we considered to be the item in a sentence turned
out to be a noun or a noun compound. Hence, we look for
the head noun in the parsed string and that becomes the
beginning of the item. For example,3g is the head noun in
what is the price of the white iphone 3g.

4. We resolve the head noun to include its modifiers. So what
is the price of the white iphone 3g will have white iphone
3g as the item, although only 3g is the head noun for the
sentence.

5. Next, we find another noun that is in a preposition or pos-
session relationship with the head noun and this becomes
the property. For example, price is in a prep_of relation-
ship with 3g in the sentence what is the price of the white
iphone 3g while number is in a possession relationship
with Doe in the sentence what is John Doe’s cell phone
number?

6. Finally, we resolve the property such that its modifiers are
attached to it. So the full property for what is John Doe’s
cell phone number will be cell phone number.

Empirical Evaluation of Query Processing

We evaluated how well the system was able to determine
the item and the property of the item given a sentence. For
example, given the sentence what are some user reviews of
bangkok haunts, the item would be bangkok haunts and the

property would be user reviews. To get the data set, we
asked people in our department to send us ten tasks they
had tried to do on the web expressed in the form of an En-
glish sentence. Twenty people responded. We removed du-
plicates (from 200 sentences) and ended up with about 130
sentences. Next, we asked two people to decompose each
of the sentences into an item and a property. Then we had
the system do the same for each of the sentences. We used
the agreement between the two experts as the ground truth,
i.e., the correct value for the item and property of a sentence
are the values both experts agreed on. For the item, the ex-
perts agreed 75% of the time and for the property they agreed
69% of the time. Making the ground truth to be only the
data points for which both experts were in agreement, the
system’s recall for identifying the item was 69% while the
recall for identifying the property was 83%. We didn’t com-
pute the precision of our query processing algorithm since
we were more interested in seeing how correctly our system
could identify item name and property when they were ac-
tually present in the query and when both annotators agreed
on their values. During error analysis, we found that most
of the errors were a result of the system not being able to
parse the user’s text correctly. For example in the sentence
who is the author of what is the what, the system does not
recognize what is the what as one entity. In the future, we
hope that with enough training examples, we can retrain the
parser model to deal with these kind of user inputs. The
fact that experts only agreed part of the time emphasizes the
difficulty in identifying the item and property in an uncon-
strained user’s textual input; in that light, the system’s per-
formance is relatively good considering the difficulty of the
problem.

SEARCH AUTOMATION

In this section, we describe our algorithm to automate search
in a website. It takes a website URL and item as input and
outputs a list of search results options. Our algorithm identi-
fies a search form from the home page of that website, uses
a browser automation service such as CoCo [10] to search
that website using the item as the search term, identifies
search results from the next returned webpage, extracts op-
tions from the search results, and returns them. Next, we
will describe two key components of our algorithm: search
form detection and search results detection.

Search Form Detection

Search form detection on webpages has been discussed in a
number of previous papers [[15,[11]. For example [[15] used a
supervised machine learning based approach to detect search
forms. [[11]] used a simpler approach by using a shallow
knowledge-base with keywords to detect search forms. We
use the second approach (knowledge-base with keywords)
to detect search forms for its simplicity and to avoid the
amount of effort needed to collect and label training data
for a machine learning solution. In [[11]], the authors pro-
posed a knowledge-base with the words search, find, and go.
We augmented that knowledge-base with additional words
(e.g., look it up, go!) after inspecting a number of websites.
[11] identified all instances of search forms from the web-
page. However, we identify a single search form to conduct

a search. If there are multiple search forms in a page, we
select the one which gets the highest word overlap with the
keywords from knowledge-base.

Search Results Detection

Existing Approaches

There are existing algorithms to detect search results [[15} |5}
11]]. Previous approaches can be broadly categorized as ma-
chine learning based solutions (e.g., [[15]]), template-based
solutions (e.g., [S]])) or contextual browsing solutions [11].
Template-based solutions [5]] require the system to store a set
of search result templates provided by users, which is neither
scalable nor practical for our problem. Contextual browsing
solutions [[11]] use the context of a followed link or the search
terms to detect the most relevant geometric segment from the
next webpage. However, this approach assumes that search
results appear in one geometric segment which is not neces-
sarily the case because of different granularity of geometric
segments in webpages across different sites. We did not use
a machine learning based solution (as proposed in [15]]) to
avoid the amount of effort required to train the classifier for
search results detection. Although such a solution would
work well for the domains on which the classifier is trained,
incorporating a new domain would require additional train-
ing, which we wished to avoid.

Our Algorithm

To fit our needs, we developed our own algorithm to detect
search results from a webpage. In this section, we refer to
each individual search result as a search result item. We use
the term search result node to refer to the DOM tree node
which contains those search result items.

Our algorithm uses the observation that search result items
have similarity in their presentation patterns (e.g., matching
XPaths) in the webpage. Figure 2] shows results for a search
for “calcium citrate” on the Walgreens.com website. Each
search result item is highlighted using a dotted rectangle.
As seen from the figure, the items have similar presentation
styles and patterns.

To detect search results, it is important to capture such sim-
ilarities in patterns. A simple approach to detect search re-
sults by using pattern similarities could be to visit the DOM
tree of the page in a top down order, for each node check if
its child nodes are similar (matching tags and similar struc-
ture) and identify the parent node as the search result node
if child nodes are similar. However, such an approach won’t
work because it may also detect item taxonomies (categories
of items, e.g., in Figure[2] the menu items on top of the page)
as a search result. In addition, in a webpage there are many
lists with repeating patterns, e.g. list of links, combobox,
etc. If we only look at pattern similarity of the nodes to de-
tect search results, we may end up detecting many repeating
patterns which are actually not search results. So how can
we differentiate search results from other lists or repeating
patterns?

From previous studies and our observations of many web-
sites, in addition to repeating patterns of search result items,

we deduced the following additional criteria for detecting
search results:

e Each search result item typically has some structure as
opposed to consisting of a single link, which doesn’t have
any subtree or structure in its DOM tree representation.
For example, in figure 3] the search result item has a struc-
ture (subtree).

e There are some similarities in the tag distributions of the
child nodes of each search result item in the DOM tree.
For example, in figure [3] child nodes of the search result
item have similar tag distributions.

We may apply the above criteria to the simple approach (to
detect repeating patterns) to detect search results. Thus, if
the childnodes of a given node are similar (similar tag-distri
butions), we can do further checking for each of them to see:

e if they have some structure

o if there are similarities in tag distributions of their child-
nodes.

This approach can detect more (actual) search results than
the previous simpler approach because it prevents single lists
of links or images, which are most often used to display cat-
egories of items or other lists, from being identified as search
results. However, in a webpage there may be multiple pat-
terns which satisfy all of the criteria of search results (i.e. re-
peating patterns and the other two criteria listed above). To
prevent other lists that satisfy the above criteria from being
identified as a search result, we add the following heuristics
to our algorithm:

e Search results should be the list where each search result
item will be associated with a feature which represents the
pattern of that search result item. We call it a Pattern Fea-
ture. Multiple items can have the same value of that fea-
ture. A weight (importance) of a particular pattern feature
will represent its frequency of occurrence. We compute
a weight (importance) of each potential search result item
(identified using the previous criteria) using the weight of
its pattern feature, and the match of the search terms (since
in many cases, a search result item has matching terms
with search words) with the words from it. For (actual)
search result items, such weight will be maximum among
items in any other lists which satisfy our other criteria of
search results detection.

We designed our algorithm which takes into account all of
the criteria discussed above. We design our algorithm as
a bottom up approach so that we generate all the candidate
search result items from the webpage, compute their features
and weights, find the list of items which have the maximum
weight, and return them as search results.

Now that we have discussed our design decisions, we will set
up few definitions which will help to understand our algo-
rithm. We refer to each DOM tree node which has a pattern
inside it as a pattern node. Figure [3]shows one such search

result item and the corresponding pattern node in the DOM
tree. As seen from the figure, child nodes of the pattern node
have similarity in their structure. Algorithm [isPatternNode|
determines if a node in the DOM tree is a pattern node. We
won’t discuss each line of the algorithm for lack of space,
but conceptually this algorithm detects a node as a pattern
node if it has child nodes with similar structure. However,
we like to mention some additional heuristics we have ap-
plied to detect a pattern node:

e while computing child-tag distribution of a node (line 2),
we ignore the tags which don’t affect the structure, exam-
ples of these tags are br, hr, style, script, b, text.

e while computing if two child nodes are similar (line 11),
we only compute similarity of their tag distributions by
using cosine similarity and a threshold of 0.3 (determined
experimentally).

e while deciding if a node is a pattern node by comparing
number of matching child nodes (line 13), we use another
threshold which is 1 (determined experimentally).

e while checking if a pattern feature is valid, we use the
observation that a pattern node typically doesn’t contain
any of the following tags in its XPath: script, input,
option, select, map, area, strong. Thus, a node
with any of those tags in its pattern feature is not a valid
pattern node.

Algorithm[isPatternNode|identifies the search result item shown

in figure 3| as a pattern node. The pattern feature computed
for thisnode is: html .body.div.div.div.div.div.
div.div.div. The above algorithm is the core part of the
search results detection algorithm [findSearchResults| which
computes a weight for each pattern feature, finds pattern
nodes with maximum weight, their common ancestor node
(i.e. search result node) and all the search result items which
descend from that node.

Algorithm isPatternNode
Input: Node: A Node in the DOM Tree
Output: TRUE: if the node is a pattern node, FALSE other-
wise
if Node.isLeaf return FALSE
Node.ChTagList <—Child Tag List of the Node
CmTag «<Most Frequent Tag in Node.ChT agList
Index <—Index of First Child Node which has CmT ag
CmChild < Node.ChildList.Get(Index)
MatchCount <0
for i — 1to Node.ChTagList.Length

do CurChildTag < Node.ChTagList.Get(i)

CurChild < Node.ChildList.Get(i)

10. if CurChildTag = CmTag
11. then if isSimilar(CmChild, CurChild)
12. then increment M atchCount
13. if MatchCount > Threshold

XN R W~

14. then Node.Pattern «Concat(Node. X Path,CmTag)

15. if isValidPattern(INode. Pattern)
16. then return TRU E
17. else return FALSE

18. return FALSE

Walgreesna
pharmacy 0-:i:::j "":-.’JI;' info photo i':i':(::\

beouty health & well being | home medical personal care contact lens health shops s

+ Store Locator

Walgreens |5 Open Labor Dayl -+ Find a stora

Everyday Frea Shipping o s2s

earch Results for calcium citrate
Articles and Videos (6)

Products (9

9 Items Sort By | Relewance e Mems Par

ew. ElGna [Bluist Oniine
il e

T Bary 1, Get 1 50% Off Eligible
I_'_t_:_:'ltral:al aEsatie s I
|" e e |

- R S s —
! | D Coated Cag \
|t ff EBgitile
I-'Ei_t..r.alzal :
I-Ilvu_u.-' porOCART | I
I Sawe to Shopping List I
\ I EEE S S S S S S S S S S . .. —I - ’

Figure 2. Search Results in a webpage (highlighted using dotted rect-
angle). Each of them are are presented using similar pattern. Section
of the webpage corresponding to the Search Result Node is highlighted
using solid rectangle

Algorithm findSearchResults

Input: Node: a Node in the DOM Tree

Input: ¢: Search Terms

Output: searchResults: Search Result Items

1. DescendentList «Nodes in the subtree of Node
pNodes

3. pFeatures <)

4. for i« 1to DescendentList.Length

5. do DescNode < Descendent List.Get(4)

6. if isPatternNode(DescN ode)

7 then add DescNode to pNodes

8 add DescNode.Pattern to pFeatures

9. MaxWeight <0

10. srNode —NULL

11. searchResults <)

12. for i «— 1 to pFeatures.Length

13. do Pattern «pFeatures.Get(i)

14. pNodey «—pNodes.Get(i)

15. Weight «pFeatures.Freq(Pattern)

16. Words «<—pNode,1.Words

17. Similarity < Sim(Words, q)

18. Weight «—Weight + Weight * Similarity

19. if Weight >0

20. then j —index of next occurrence of Pattern
in pFeatures

21. pNodey —pNodes.Get(j)

22. if Weight > MaxWeight

23. then MaxW eight W eight

24, srNode «—comAnces(pNodei, pNodes)

25. searchResults «— findItems(srNode,

Pattern, pNodes)

[———————————— e ————
i Citracal Calcium Citrate + D Coated Tabletlsf — — — — — — — — — — \
| Petites Petites

' g zelCount 2000 &a

i Price$13.49

il

t Buy 1, Get 1 50% Off Eligibiq
i

o

Figure 3. (a) A Search Result Item. (b) DOM tree node (highlighted us-
ing solid rectangle) for the search result item. Childnodes of this search
result item with similar structure are highlighted using green and red
dotted rectangle. This DOM tree node is a pattern node since its child
nodes have similar tag distributions. Each of the search result items
in Figure 2] are identified as pattern node, and their common ancestor
becomes search result node containing search result items.

26. return searchResults

Option Detection from Search Result

The input to this algorithm is a search result item, and output
is an option. To do that, it identifies all the links in the search
result item, and assigns a score to each of them depending
on the similarity between the text of that link and the search
terms. The link with the highest similarity is identified as the
option to present to the user. If no link is similar (similarity
score is zero), then it returns the first link (in the DOM order)
as an option.

Empirical Evaluation of Search Automation

The key algorithms of search automation are search form de-
tection and search results detection. Here we describe the ex-
periment we conducted to evaluate the performance of these
two algorithms.

Experimental Setup

We used 58 websites for our experiment. The websites were
selected from surveys we conducted both in our department
and outside. The surveys asked people to send us the name
of the websites they visit frequently for information retrieval
tasks. We visited those websites and saved the homepage of
each of them. We identified the homepages which contained

a search form. There were 48 websites in that category. For
those websites, we conducted a search (2 searches per web-
site) and saved the search result pages. In total, we collected
96 search result pages.

Performance of Search Form Detection

For this experiment, we used all of the homepages as input to
the search form detection algorithm and verified the output.
We computed how many search forms were identified cor-
rectly, how many were identified incorrectly and how many
were not identified. From this computation, we measured
the recall/precision of the search form detection algorithm.
We found that search forms were correctly identified for 35
of those pages, which yields a recall value of 73% (35/48).
The algorithm identified the wrong form as the search form
for 5 websites, which results in 87.5% (35/40) precision.

One of the reasons for such incorrect identification is the

presence of multiple search forms in a webpage, where only

one of them is the correct search form with which an item

should be searched. For example, in the Walmart website

(http://www.walmart.com), there are two search forms, one

for product search and the other one for store locations search.
In addition, there are websites which have general web search
forms in addition to a search form for internal search. How-

ever, the current algorithm cannot identify the correct search

form for such cases. In the future, we need to develop a more

sophisticated algorithm to deal with those cases.

Recall performance of search form detection may be im-
proved by adding more keywords to our knowledge-base.
However, that may drop precision. We plan to conduct a
large study across more websites to collect the keywords
which typically appear in search forms.

Performance of Search Results Detection

For this experiment, we used 96 webpages with search re-
sults as input to our search results detection algorithm and
verified the output. We found that search results were cor-
rectly identified for 67 of those pages, which yields a recall
value of 70%. For 18 of those 29 pages where the algo-
rithm didn’t identify the correct search results, it identified
incorrect search results. This results in 67/(67 + 18) or 79%
precision.

We analyzed the webpages where our algorithm was not able
to detect search results or detected wrong results and sum-
marized the reasons for those failures. The main reasons are:

e Our algorithm detects search results when there are at
least two search results, and fails otherwise. The algo-
rithm needs further improvement to deal with single search
result case.

e While detecting pattern nodes, our algorithm uses some
thresholds which may affect the accuracy of pattern node
detection and that affects search results detection.

e Our algorithm doesn’t work for very shallow search re-
sults without much structure in them. However it was a
design choice. In future, we will develop algorithm to

identify all types of search results (with or without struc-
ture).

INFORMATION EXTRACTION

This section discusses our approach to extract the property
of an item from a detailed web page (e.g., the page which
contains information of properties of an item). This is an
application of information extraction from webpages which
is a well researched topic and there are many papers in this
topic, such as [8| 12} [1]]. Most of the prior art uses analysis
algorithms and heuristics on DOM trees to extract certain
information. However, they were developed for specific ap-
plications, e.g., reproducing the web page content for view-
ing on a mobile device [[12f], structured data extraction [1]].
None of the existing techniques were readily applicable for
our problem, which is to find the property of an item. As
a result, we have developed our own heuristics to solve this
problem.

Given a item detail web page, we do a number of pre-processing

steps before we search for the desired property of the item in
that page. The pre-processing steps are:

e We remove advertisements from the page using the ap-
proach outlined in [8]].

e Next, we remove the text contained within the option tag
because these are usually a drop-down menu. We also
remove all script tags and the text contained within them.

After the above pre-processing is done, we use the algorithm

[findProperty|to find the property of the item.

Algorithm findProperty
Input: item : item
Input: property : property
Input: webpage : the webpage to be searched
Output: fop3Result: a list containing the top three pieces of
information on the webpage that matched the property
to be extracted, otherwise it returns NULL
HNodes «— findH N odes(webpage, item)
if HNodes # NULL

then L Nodes «—get LN odes(Stblinigs(H N odes))

else LNodes «getLNodes(webpage)
top3 Result «searchLNodes(LN odes, property)
if top3Result = NULL

then synSet «—getSynset(property)

for i — 1 to synSet.Length
do top3 Result «—searchLNodes(LN odes,
synSet.Get(i))

10. if top3Result # NULL
11. then return top3 Result
12. return top3 Result

O WD —

Line 1 of the algorithm retrieves all the header nodes (h/
or h2) which contain the item. We look for the item in these
nodes because a webpage which contains a detailed informa-
tion about the item typically highlights the item by increas-
ing its font size relative to the other text on the page. Thus
items typically appear in header nodes. If an item appears
in header nodes, then we get all of the leaf nodes from the

siblings of such header nodes (line 3). Otherwise, we get all
the leaf nodes from the entire web page (line 4).

Next, we use the vector space model to construct an index
of the text content of the leaf nodes and then search for the
property in that index (line 5). We retrieve the top 3 results
from the search and return as output. However, if the system
does not find the property, we use WordNet [17] to retrieve
the words that are similar to the property and then search for
these words.

This approach is limited in three ways. First, we can only ex-
tract information that is in plain text from the page. Second,
we can only extract information that is actually present in the
HTML source of the webpage. If the information is obtained
dynamically from a database, such as in Google Maps, then
we cannot extract it. Lastly, we don’t deduce the semantic
meaning of the property. So if a user wants the author of a
book, we search for author in the document. If the keyword
author or its synonyms are not on the page, for example if
the page simply contains book by John Doe, then we will not
be able to identify John Doe as the author.

Empirical Evaluation of Information Extraction

For this experiment, we wanted to evaluate how well our
algorithm was able to extract the correct information from
a webpage, given that the information to be extracted was
in plain text. To get the data set, we asked twenty people
to send us the top 10 websites they visited in the last cou-
ple of days and what they were trying to do on those web-
sites. We removed duplicates and ended up with 9 categories
and about 3 websites for each category. The categories were
sports news, technews, general news, research papers, mul-
timedia, product, conferences, non-english language and re-
quires authentication. We dropped the non-english websites
and the websites that required authentication. Then for each
of the remaining categories, we visited those sites and noted
down what would be considered a item detail page for the
website. For example, for research papers from the ACM
website, a item detail page would be a page containing the
description of one research paper.

Next, using the information we collected about what users
were trying to do on the websites, we identified certain prop-
erties we felt would be reflected in textual form on the web-
page. For example, for research papers, we had DOI, author
and abstract while for products, we had price, model num-
ber, product features and reviews.

Then for each of the item detail pages, we had a user note
down what they would select from the page if asked to ex-
tract the associated properties. After this, we let the sys-
tem extract the top 3 relevant pieces of text on the webpage
that were associated with each property. Next, the user was
asked to identify which, if any, of the three pieces of text the
system extracted, matched what the user had extracted. We
assigned the score O if none of them matched, 1 if the first
one matched, 2 for the second and 3 for the third. If a text
the system extracted contained significantly more text in ad-
dition to the text extracted by the user, then the system was

considered to have failed to extract the required information.

On analyzing the result, 50% of the requested properties
were extracted in the first result slot, 12% in the second slot
and 2%, in the third result slot while the sytem failed to ex-
tract 36% of the properties requested. Using the user’s ex-
tracted text as the ground truth, the recall was 0.63 while the
mean reciprocal rank was 0.57.

The 36% that the system failed to extract correctly can be
classified into four groups. The first group contains extrac-
tions in which the system gave much more text than the user
wanted. We can improve this by further limiting the amount
of text sent back to the user. We can have the system output
only one sentence as opposed to all the text contained in a
leaf node.

The second group contains extractions in which the system
only extracted the text that exactly matched the property but
didn’t extract more information associated with the property
that the user wanted. This was a problem with the way the
webpage was organized. For example a table on the webpage
might have price as a column header and then have different
prices listed in the columns but our algorithm was looking
for the lexical price to be next fo the numerical price. We
can add better heuristics to define next fo when dealing with
webpages.

The third group contains extractions in which the property
was of a different form on the page, for example the user
wanted information about the contributors to an article but
the web page only had information about people that con-
tributed to the article. We can improve this by lemmatizing
the index and the search term.

The last group contains extractions in which the search term
occurred multiple times on the page and the one the user
wanted was not in the top 3, extracted by the system. To fix
this problem, we need to come up with better heuristics to
rank such multiple occurences.

USER EVALUATION

We conducted a user study to collect feedback on our over-
all approach. Specifically, we wanted to test the following
hypotheses:

e HI. Users have complex information retrieval needs.

e H2. The item-property model is a valid building block for
complex information queries.

e H3. Users can express their needs as an item-property
query.

Experimental Methodology

The user study consisted of a semi-structured interview of
six participants. All of the participants were software devel-
opers in Argentina, which allowed us to evaluate the applica-
tion of our approach in the context of a developing country.
Only two of the participants owned a smart phone and none
of the participants had a data plan subscription. Half of the

participants occasionally paid for data minutes for particular
operations. One of the participants didn’t own a cellphone.
All of the participants had seen virtual assistants before. Two
of them were frequent users of CoCo [10].

The interviews were conducted via a combination of tele-
phone, instant messaging, and remote shell (SSH). Each of
the interviews lasted for 45 minutes, during which the in-
terviewer took notes from the responses and remarks of the
participants.

The flow of each interview was as follows:

e We introduced the problem of open web mobile informa-
tion retrieval to the user and collected demographic infor-
mation. We asked the user to provide examples of infor-
mation queries they normally do on the web.

o We presented the item-property model and then asked the
user to produce information queries following that model.

e For one of these queries, we asked the user to explain in
detail how she would solve it using a computer, a mobile
phone, and a human assistant.

o We walked the user through an interaction with our system
using the scenario shown in Figure|l] We then asked the
user to comment on the interaction experience and results
seen.

Results and observations

All of the users mentioned that they perform information
queries on the web multiple times per day while on their
desktop computers. On the other hand, only half of them per-
formed information queries on their phones, and very rarely.
The main reason given is that the browser in their phones is
not comfortable enough.

Most of the queries that users expressed involved complex
operations such as comparing prices of products in differ-
ent websites, getting weather conditions for multiple cities
while arranging for a fishing trip, or finding the most conve-
nient price for a hotel in a given city. This result confirms
hypothesis HI.

After we explained our item-property model, all users were
able to formulate queries with its characteristics, and many
of these corresponded to portions of the more complex queries
they had formulated before. Some users required extra ef-
fort to map from their information need to the item-property
model and a few of the produced queries did not strictly fol-
low this model. These results support hypothesis H2, and
provide evidence for H3.

After watching the demonstration, all users agreed that the
output matched what they expected. Most users were sur-
prised to get more than one result back, but appreciated the
additional information provided (different types of prices).
All users were confused by the third, invalid answer.

Several users identified ways to improve the system. One
user indicated he would have preferred the list of options to

include the requested property for each of the listed items;
two users commented they would like to be able to express
search filters (e.g., used or new, category of room); and one
user also suggested that after the result is returned, the agent
allows querying for additional properties of the item found.

The users that had used CoCo [|10] before indicated that, in
comparison, this system represents an improvement. The
main argument for this statement was that many times an
information need arises in mobile situations, before CoCo
has been trained to complete it. Having a mobile IR system
such as this one would enable the user to solve these queries
without prior training.

When asked if they would use a system with these charac-
teristics, the response was almost unanimously positive. All
participants but one would prefer it over using a phone’s web
browser. Two even mentioned they would like to use it on
their desktop PCs. Only two users would not prefer it over
asking a friend on the phone (one had no data plan, and the
other did not trust the information on the web for her query).

CONCLUSION AND FUTURE WORK

We have presented an algorithm for the problem of mobile
information retrieval on the open web. Specifically, we have
addressed the problem of item-property retrieval from arbi-
trary web sites. Our approach combines NLP, search form
detection, search result detection and summarization, and
information extraction in order to provide a textual dialogue-

based interface for finding information on the web. We present

empirical evidence that each of the components in our ap-
proach works well, and a user evaluation validating the use
of such a system for information access in the developing
world. There are many possible avenues of future research.
First, we will improve our algorithms to support more infor-
mation retrieval needs that follow the item-property model.
For example, we may use similar heuristics for processing
similarly organized sites, especially to detect search results.
Second, we will explore whether exploiting domain-specific
constraints can help our algorithms to deliver a better result.
Third, we will address more complex information retrieval
tasks (e.g., fetching information from multiple sites, collect-
ing information about multiple items, making comparisons
between items) that can use the algorithms presented in this
paper as a basic building block. Furthermore, we would like
to develop algorithms for doing tasks that require taking ac-
tions on the open web, e.g., updating twitter status, paying
bills. Fourth, we will integrate this system as an extension to
the CoScripter Concierge (CoCo) [[10] to leverage the same
transport mechanisms that CoCo uses. Finally, we will de-
ploy this system to users, especially mobile users in devel-
oping countries and conduct field studies to determine how
well our system meets their needs.

ACKNOWLEDGEMENT

We thank Jeffrey Nichols for his insightful comments about
this paper, Luis Mariano Guerra for his help in maintaining
our server and all of our study participants.

REFERENCES
1. A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD 03, pages 337-348,
2003.

2. C. Baker, C. Fillmore, and J. Lowe. The berkeley
framenet project. In Proceedings of the 17th
international conference on Computational
linguistics-Volume 1, pages 8690, 1998.

3. D. Das, N. Schneider, D. Chen, and N. Smith.
Probabilistic frame-semantic parsing. Proc. of
NAACLHLT, 2010.

4. http://www.research.ibm.com/deepga/.

5. M. Dontcheva, S. M. Drucker, D. Salesin, and M. F.
Cohen. Relations, cards, and search templates:
user-guided web data integration and layout. In UIST
’07, pages 61-70, 2007.

6. http://www.google.com/goog4ll/.
7. http://www.google.com/sms.

8. S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm.
Dom-based content extraction of html documents. In
WWW 03, pages 207-214, 2003.

9. D. Klein and C. Manning. Accurate unlexicalized
parsing. In Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics-Volume 1,
pages 423-430, 2003.

10. T. Lau, J. Cerruti, G. Manzato, M. Bengualid, J. P.
Bigham, and J. Nichols. A conversational interface to
web automation. In To Appear at UIST ’10, 2010.

11. J. Mahmud, Y. Borodin, and I. V. Ramakrishnan.
Assistive browser for conducting web transactions. In
IUI "08, pages 365-368, 2008.

12. A. Rahman, H. Alam, and R. Hartono. Content
extraction from html documents. In WDA ’01:
Proceedings of the 1st Int. Workshop on Web Document
Analysis, 2001.

13. http://www.siri.com.
14. http://www.siteonmobile.com.

15. Z. Sun, J. Mahmud, S. Mukherjee, and I. V.
Ramakrishnan. Model-directed web transactions under
constrained modalities. In WWW °06, pages 447-456,
2006.

16. W. Wahlster. Smartweb: multimodal web services on
the road. In MULTIMEDIA 07, pages 16—16, 2007.

17. http://wordnet.princeton.edu.

18. M. X. Zhou, K. Houck, S. Pan, J. Shaw, V. Aggarwal,
and Z. Wen. Enabling context-sensitive information
seeking. In IUI '06, pages 116123, 2006.

	Introduction
	Related Work
	Question Answering and Interactive Information Retrieval Systems
	Intelligent Agents for Mobile

	Mobile information retrieval
	Preliminary study
	The information retrieval problem
	Item-property information retrieval

	Natural Language Query Processing
	Empirical Evaluation of Query Processing

	Search Automation
	Search Form Detection
	Search Results Detection
	Existing Approaches
	Our Algorithm

	Option Detection from Search Result
	Empirical Evaluation of Search Automation
	Experimental Setup
	Performance of Search Form Detection
	Performance of Search Results Detection

	Information Extraction
	Empirical Evaluation of Information Extraction

	User Evaluation
	Experimental Methodology
	Results and observations

	Conclusion and Future Work
	Acknowledgement
	REFERENCES

