
Interpreting Written How-To Instructions

Tessa Lau, Clemens Drews, and Jeffrey Nichols
IBM Almaden Research Center

650 Harry Rd
San Jose, CA 95120 USA

{tessalau,cdrews,jwnichols}@us.ibm.com

Abstract
Written instructions are a common way of teaching
people how to accomplish tasks on the web. How-
ever, studies have shown that written instructions
are difficult to follow, even for experienced users.
A system that understands human-written instruc-
tions could guide users through the process of fol-
lowing the directions, improving completion rates
and enhancing the user experience. While general
natural language understanding is extremely diffi-
cult, we believe that in the limited domain of how-
to instructions it should be possible to understand
enough to provide guided help in a mixed-initiative
environment. Based on a qualitative analysis of in-
structions gathered for 43 web-based tasks, we have
formalized the problem of understanding and in-
terpreting how-to instructions. We compare three
different approaches to interpreting instructions: a
keyword-based interpreter, a grammar-based inter-
preter, and an interpreter based on machine learning
and information extraction. Our empirical results
demonstrate the feasibility of automated how-to in-
struction understanding.

1 Introduction
Written how-to documentation is everywhere, from the in-
struction manuals that accompany software packages to FAQ
documents available online. Like a cooking recipe, these in-
structions often explain in step-by-step order how to accom-
plish a task. Today, many instructions are distributed in elec-
tronic form. For example, in the enterprise, employees are
routinely sent instructions via email on how to update their
emergency contact information, classify their IT assets, trans-
fer employees into a different division, or search for job open-
ings. In the consumer web space, users are sharing instruc-
tions via forums and newsgroups to help each other accom-
plish tasks in various applications.

Unfortunately, studies have found that people have dif-
ficulty following written instructions [Lau et al., 2004;
Prabaker et al., 2006]. Some people report difficulty map-
ping from the written instruction to the target on the screen,
and having to systematically search the on-screen interface
for the named button. Others lose track of where they are

in the instructions, resulting in following instructions out of
order, or missing steps entirely. Such problems can be ex-
acerbated if users are distracted in the middle of performing
tasks and must return to them later having lost most of their
context.

While guided help systems such as Coachmarks [coach-
marks, 1996], Stencils [Kelleher and Pausch, 2005], and Co-
Scripter [Leshed et al., 2008] address this problem, these sys-
tems rely on documentation that has been pre-authored for
use with their system. They cannot take advantage of the vast
array of existing how-to literature already available on the in-
ternet that has been written for humans by humans. If we
could automatically parse and interpret these instructions, we
could enable a new class of guided help systems that recog-
nize instructions in context (e.g., in email, or on a web page)
and immediately guide users through performing the task.

At a high level, the problem of understanding hand-written
instructions seems to amount to understanding natural lan-
guage. However, we believe that most instructional mate-
rial uses a more structured subset of language that may be
amenable to automated processing, particularly if we limit the
domain of interest to a specific platform. In the web domain,
which is the focus of this paper, most documentation uses
a common set of terminology to describe operations, using
verbs such as “click” and “type” and objects such as “link”
and “textbox”.

Specifically, this paper makes the following contributions:

• A formalization of the problem of understanding hand-
written how-to instructions;

• A qualitative analysis and manually-labeled corpus of
hand-written instructions collected from the internet;
and

• A comparison of three algorithms for interpreting writ-
ten instructions automatically.

We begin with a brief overview of related work. We then
introduce the data we have collected and present an initial
qualitative analysis of the data. Next, we introduce the prob-
lem of understanding how-to instructions, and describe our
three approaches to the problem. We then report the results
of a comparative study of the performance of our three ap-
proaches. Finally, we conclude with a discussion of future
work.

2 Related work
Previous studies have illustrated some of the limitations of
how-to documentation, and proposed various approaches to
address these limitations. The Sheepdog study [Lau et al.,
2004] found that people have difficulty following directions
online, including difficulty mapping from the written text to
the on-screen widget and difficulty following instructions in
the correct sequence. To address these problems, DocWiz-
ards [Prabaker et al., 2006] presents users with a guided walk-
through of demonstrationally-authored documentation, high-
lighting steps as necessary in the Eclipse interface to visu-
ally lead users through the instructions. CoScripter [Leshed
et al., 2008; Little et al., 2007] provides a similar guided
walkthrough interface for web tasks. All of these systems
assume that instructions have previously been recorded in
a proprietary format; progress on automatically interpreting
hand-written instructions could enable each of these systems
to work with a much wider library of existing instructions.

Automatically parsing textual instructions can be viewed
as an information extraction problem. Previous research
has successfully parsed hand-written requests in email, e.g.
VIO [Tomasic et al., 2006], which automatically extracts
commands to fill out a form to effect a change on a web
site. While VIO is designed to work with a pre-specified
set of possible forms, our system addresses the more diffi-
cult challenge of working with arbitrary web pages, where
the set of possible actions is not known in advance. The Mr.
Web system [Lockerd et al., 2003] found that users utilize
a constrained form of English when communicating with a
webmaster over email. We believe a similar effect occurs in
how-to documentation, where a constrained form of English
is used to describe interactions with web applications.

Little and Miller’s Keyword Commands system [Little and
Miller, 2006] was one of the first to interpret user-generated
instructions as actions on web pages; their algorithm inspired
the keyword-based interpreter examined in this paper. While
keyword-based approaches excel at interpreting underspeci-
fied commands, they may produce many false positives when
given instructions that do not contain any actionable com-
mands (which occur frequently in our datasets).

The PLOW system [Allen et al., 2007] also uses natural
language understanding to interpret human-generated speech
in the context of a web task completion system. PLOW’s
interpretation is performed within the context of a supervised
interaction that includes user demonstrations, which are not
available to our system. We anticipate leveraging some of the
natural language algorithms used by PLOW in the future.

3 Datasets
To evaluate our algorithms, we collected a corpus of instruc-
tions written by people describing how to accomplish tasks
on the web. We crowdsourced the problem by creating a set
of tasks on Amazon’s Mechanical Turk marketplace, asking
volunteers to write how-to instructional text in exchange for
USD$0.25 per set of instructions. We found it necessary to
iterate several times on our task description in order to elicit
the desired output, as others have found [Kittur et al., 2008].

scenarios # steps # segments
TRAIN 24 158 274
TEST 19 142 289

Table 1: Summary of datasets

We collected two sets of instructions using Mechanical
Turk and formed two datasets, TRAIN and TEST (Table 1).
TRAIN contains 24 scenarios, with a total of 158 steps. TEST
contains 19 scenarios, with 142 steps.

Our workers wrote instructions for a wide range of web-
sites and tasks. Their scenarios include how to create a
gmail account, how to buy a fan on Amazon.com, and how
to create a level 70 WarCraft character using a web-based
character-editing tool. Most of the scenarios described tasks
on publicly-accessible websites, though several required au-
thenticated access to perform, such as logging in to an online
banking site, or accessing a university’s intranet. In order
to evaluate the correctness of an interpretation of an instruc-
tion, we needed to be able to access the specified website.
The TEST′ dataset contains the subset of TEST that operate
on websites that are accessible to the general public. TEST′

contains 166 instructions.

4 Qualitative analysis
Interpreting human-written instructions is challenging be-
cause people do not always use a consistent syntax when de-
scribing commands to perform on web pages. The more vari-
ation (noise) there is in instruction text, the harder it will be
for automated systems to parse those instructions correctly.
A qualitative analysis of our dataset revealed a high level of
noise that makes automated interpretation challenging.

First, there were a large number of spelling and grammar
mistakes in the collection. For example, this step was part of
a set of instructions on how to use Google search:

I- 1 Click “I’m Felling Luck’ to go direclty to a website that
involves your description.

The three misspellings and pair of mismatched quotes are
representative of the mistakes we found in the larger corpus.
For the results described in this paper, we have left the data
intact and not done any spelling or grammar correction on the
data. Any excerpts quoted in this paper preserve the original
mistakes made by the authors.

Second, there was a large variation in complexity of each
individual step description. Some participants described one
command per step, such as the example above. Others
grouped together many commands into a single step:

I- 2 After you have filled in the information on this page,
click the bottom button that says “Next.” Now a form that
asks for more information will pop up. [...] Fill in the ad-
dress if the form doesn’t have one already. [...]

This step includes multiple instructions as well as com-
mentary about those instructions. It also includes verification
steps, instructions that help the reader keep in sync by advis-
ing the reader what to look for or what to expect (e.g., “now
a form will pop up”). While our current algorithms do not

2

do anything with this type of instruction, we envision future
systems being able to understand these verification steps to
ensure the user is on the right path.

Many instructions also contained conditionals, such as
steps that instructed users to check a box if they wanted a
desired effect (e.g., remembering your username on future
visits).

We hoped that writers would use a simple verb-object
grammar to describe commands on web pages. However, we
often found out-of-order instructions such as the following:
I- 3 Just underneath where is says “Step 1” there is a button
saying “browse”, click on it.

Finally, several steps contained implicit language:
I- 4 You can use the “Preview” button to see how it looks.

People reading this step may or may not choose to click the
button, depending on their needs; a guided help system would
be most useful if it pointed out the target button and left the
decision up to the user whether to invoke it.

The variety with which instructions were expressed illus-
trate the difficulty of automatically understanding such in-
structions. However, we would like to point out that complete
accuracy is not required for a guided-help system to be useful.
Even if the system can only provide automated assistance for
some fraction of the steps, having such a system would still
be better than not having any automated assistance at all.

4.1 Labeling web commands
Based on our corpus, we identified a number of “web com-
mands” that describe operations on web pages (Table 2).
These commands (go to, click, enter, select, check, or no ac-
tion) collectively cover the vast majority of actions that can
be taken on web pages. Clicks were the most commonly-
occurring action, followed by entering text. A large fraction
of segments did not describe a command; these represent the
commentary/advice segments discussed earlier.

In addition, we observed a few different methods for iden-
tifying the interaction target on each page. While people oc-
casionally used color or location to identify targets, the most
common descriptor seemed to be a textual string represent-
ing the target’s label or caption followed by the type of the
target (e.g., “the Register link”, “the Preview button”). Thus,
we assume that the combination of action, value, target label,
and target type is usually sufficient to completely specify the
command to perform.

occurrences
Action Value Target type TRAIN TEST’
Go to URL - 17 12
Click - link 88 52
Enter text textbox 19 18
Select listitem listbox 1 0
Turn on/off - checkbox/

radiobutton 3 0
No action 146 84

Table 2: Supported web commands and frequency of occur-
rence

5 Understanding how-to instructions
At a high level, we have formalized the problem of under-
standing how-to instructions into two parts: segmentation and
interpretation. Given a document containing written instruc-
tions, we first segment the document into individual segments
S1, S2, ...Sn such that each segment contains at most one
command. For a first pass, we can leverage the structure of
the document; many how-to documents use bulleted or num-
bered lists to organize instructions into a sequence of steps.

However, within each step, the text may describe one or
more commands to perform. For example, the text “enter
your name and click go” contains the two individual com-
mands “enter your name” and “click go”. Each command has
a different action (enter, click) and is applied to a different
target in the application. Segmentation splits each step into
the individual commands contained within the step. A solu-
tion to the segmentation problem would form the basis for
another paper; here, we assume our input has already been
segmented and leave the discovery of accurate segmentation
algorithms to future work.

Given a segment and the context in which that instruction
is to be followed (e.g., the web page to which the instruction
applies), we want to interpret that instruction relative to the
web page and formulate a command. The command should
contain enough information for a machine to programmati-
cally perform this command on the given web page.

We represent a command as a tuple C = (A, V, T) con-
taining:
• A - Action: the type of action to perform
• V - Value: the textual parameter to an action (e.g., URL

to visit, text to enter in a field)
• T - Target: the target on which to act
As discussed above, in written instructions, targets are typ-

ically described using a textual descriptor and a type. We use
these two properties to specify the target T :
• TL - Target label: a textual description of a target,

which may be its label, caption, or other descriptive text
• TT - Target type: the type of a target (e.g., link,

textbox, listbox)
In summary, an interpreter I is a function that maps from

an instruction segment S and a web page context X to ei-
ther a command C or null, if the segment does not contain a
command: I(S, X) => {C, ∅}.

The output of the interpreter will be input to a guided help
system that walks the user step-by-step through written in-
structions. For each segment, if no command is specified, the
help system will display the segment to the user. The user can
read the segment and optionally take action based on viewing
that segment. If the segment contains a command, the help
system should highlight the command’s target on the current
web page and place the focus on the target. For example,
if the command is to enter your username into the “login”
textbox, the help system could highlight the login textbox on
the web page and set the focus to it, so that the user could start
typing immediately in the field. After the user has completed
the instruction, the guided help system would then move on
to the next instructional segment.

3

6 Interpretation
We have implemented three different approaches to inter-
preting how-to instructions. The sloppy interpreter (KW) is
a keyword-based algorithm that uses the web page context
and the words in the instruction to synthesize commands for
that web page. The grammar-based interpreter (GR) uses a
grammar-based parser to extract the action, value, target la-
bel, and target type from the instruction. Both KW and GR
have been used in the CoScripter system; KW in the original
version [Little et al., 2007] and GR in the current version. The
machine learning-based interpreter (ML) uses trained docu-
ment classifiers and information extractors to predict the ac-
tion and extract the value, target label, and target type from
each instruction.

6.1 Keyword-based Interpreter
Though the KW algorithm has been described in detail previ-
ously [Little et al., 2007], we briefly outline it here.

KW interprets a segment of text in the context of a web
page. It begins by enumerating all elements on the page with
which users can interact (e.g., links, buttons, text fields). Each
element is annotated with a set of keywords that describe its
function (e.g., click and link for a hypertext link; enter
and field for a textbox). It is also annotated with a set of
words that describe the element, including its label, caption,
accessibility text, or words nearby. KW then assigns a score
to each element by comparing the bag of words in the input
instruction with the bag of words associated with the element;
words that appear in both contribute to a higher score. The
highest scoring element is output as the predicted target.

Once an element has been found, its type dictates the action
to be performed. For example, if the element is a link, the
action will be click; if the element is a textbox, the action
will be enter. Certain actions, such as enter, also require
a value. This value is extracted by removing words from the
instruction that match the words associated with the element;
the remaining words are predicted to be the value.

The design of the KW algorithm causes it to always predict
some action, regardless of the input given.

6.2 Grammar-based Interpreter
GR uses an LL(1) parser that parses imperative English in-
structions that are applicable to the web domain. This limits
the flexibility of the instructions that can be recognized, but
has the advantage that it is simple, fast, and precise. If an in-
struction can be parsed by the grammar, we can be fairly cer-
tain that it is a well formed statement. Statements accepted
by the grammar include: go to www.gmcard.com; and click
on the “Save and Submit” button.

The verb at the beginning of each statement describes the
action. Optionally a value can be specified, followed by a de-

Click ::= click {on} the TargetSpec
TargetSpec ::= TargetLabel {TargetType}
TargetLabel ::= “String”
TargetType ::= link | button | item | area

Figure 1: Excerpt from GR parser’s grammar

scription of the target label and an optional target type. Fig-
ure 1 shows an excerpt of the BNF grammar recognized by
this parser, for click actions. The result of a successful
parse of a human readable instruction is the extraction of the
tuple (A, V, TL, TT) from the parsed instruction.

6.3 Machine learning-based interpreter
Interpreting written instructions can be formulated as a ma-
chine learning problem. By using state-of-the-art information
extraction techniques, we hypothesized that we could build a
parser that is more tolerant of variations in instruction word-
ing (one of the weaknesses of the grammar-based parser) yet
achieves a higher precision than the keyword-based sloppy
parser.

Using the TRAIN dataset, we trained a multi-class docu-
ment classifier on the set of segments. For each segment, this
classifier predicts a class label representing the action type
of the segment (goto, click, enter, select, check, or no ac-
tion). We used the OneVsAll learner from the MinorThird
package [Cohen, 2004], which builds N different classifiers,
each of which discriminates between instances of one class
and all the remaining classes. The results of the N individual
classifiers are combined to form the final prediction. We used
the default MinorThird settings, which specify Maximum En-
tropy as the inner classifier, and used the default features.

Once each segment has been classified with an action, we
trained individual extractors to identify the crucial parts of
each segment necessary to execute it. For goto actions, we
extract the URL. For clicks and checks, we extract a target
type and a target label – enough to specify which target to
click on. For enter actions, we extract the target type, target
label, and (where possible) the string value to enter into the
text field. For select actions, we extract the target type, target
label, and the name of the item to select from the dropdown.

For each of these 11 extraction tasks, we trained a separate
annotator using the MinorThird toolkit. Each annotator was
trained on the labelled data in the TRAIN dataset. For exam-
ple, the goto-value annotator was trained to extract the values
from the 17 goto segments in TRAIN. We used the default
MinorThird settings to create the annotators, which employ a
VPHMM learner [Collins, 2002]. We also enabled the anno-
tator to employ part-of-speech tags in its feature set.

7 Evaluation
We have evaluated the performance of the three interpreters
in two phases. Our first evaluation is based on the observation
that approximately half of the instructions in our corpus did
not include a specific command, but instead included com-
mentary such as general advice on passwords. If a guided
help system were to suggest taking action on every one of
these non-command steps, it would predict many extraneous
commands, causing users to lose faith in the system. There-
fore our first experiment characterizes the ability of each
of our interpreters to correctly recognize non-command seg-
ments. In our second experiment, we consider only the ex-
ecutable commands in the corpus and evaluate the perfor-
mance of each of our algorithms at correctly interpreting each
such instruction.

4

KW interpreter
Actual \ Predicted Command No command
Command 82 0
No command 84 0

GR interpreter
Actual \ Predicted Command No command
Command 6 76
No command 0 84

ML interpreter
Actual \ Predicted Command No command
Command 74 8
No command 22 62

Table 3: Performance results for recognizing command in-
structions

7.1 Recognizing command instructions

Our first experiment evaluates the accuracy of the three inter-
preters at correctly differentiating between instructions that
contain commands and those that do not. Instructions not
containing direct commands will be presented to the user as
informational messages during execution of the procedure.

To evaluate the interpreters, we ran each interpreter on each
segment in the TEST′ corpus and noted whether it predicted
an action (e.g., click, enter, goto) or no action. Results are
summarized in Table 3. As expected, the KW interpreter cor-
rectly classifies only 49% of the segments (the ones that ac-
tually contain a command) because it assumes every instruc-
tion contains a command. The GR interpreter recognizes few
commands because only a small fraction of the instructions
in the corpus conform to its grammar; this result is not sur-
prising given the large variation in the instruction corpus. The
ML interpreter performs the best, achieving 82% accuracy on
recognizing commands. An analysis of the misclassified in-
structions reveals that the actual performance of a guided help
system would be even better than this percentage implies, be-
cause the errors are inconsequential to the operation of the
system.

For example, four of the 30 instructions contained implicit
references to clickable items but no explicit instruction to
click them (e.g., instruction I-4 above). ML incorrectly pre-
dicted taking action in this case; however, this would be rea-
sonable behavior for a guided help system.

Another 13 of the 30 instructions are misclassified as
enter actions even though the instruction does not provide
enough detail to complete the command. For example,
one instruction said to fill out the rest of your
information. ML misclassified these as enter actions
even though we expect them to be presented to the user as
general advice instead. Note also that these instructions do
not provide enough detail to identify the target label or type.
In these cases, a guided help system could simply present the
instruction as if it did not contain a command, resulting in the
correct behavior from a user perspective.

Act. Val. Label Type Overall
KW 93% 90% 65% 80% 59%
GR 9% 80% 23% 25% 3%
ML 88% 81% 33% 30% 10%

Table 4: Interpretation accuracy on 69 command instructions

7.2 Interpreting command instructions
In addition to recognizing whether or not an instruction con-
tains an command, a guided help system must correctly iden-
tify which action to take by extracting the components of the
command. Our second experiment evaluates the ability of
each of the three interpreters to correctly predict which ac-
tion to take given the instruction and the current web page.

A total of 82 instructions contained commands. Twelve of
these required the user to express an opinion about the pre-
ferred link from a set of links on a page (e.g., a search re-
sult that looked promising). Performing this type of action is
outside the scope of the guided help system that we hope to
create. We removed them from consideration; 69 instructions
remained.

In order to correctly interpret a command instruction, the
interpreter must be able to identify the action type (e.g. click),
the target label (e.g., “accept”), and if necessary, the value
(e.g., the URL to go to). We ran each of the three interpreters
on each instruction segment in the TEST′ corpus. Each inter-
preter produced an action type, value, target label, and target
type for each segment. We then compared these against the
true values as defined by a human (one of the authors) man-
ually reading the instruction and interpreting it on the web
page. If all of the components match, then we deem the inter-
preted command to be correct.

Many of the enter instructions required human judge-
ment to complete (e.g., entering a username or a search term).
In these cases, identifying the target is sufficient for a guided
help system; the exact text to enter is not critical. Therefore,
for these human-judgement commands, we deemed the inter-
pretation correct as long as the predicted action, target label,
and target type are correct.

Table 4 summarizes the results. The Action, Value, La-
bel, and Type columns show each algorithm’s performance at
predicting each command component. The Overall column
shows the accuracy of predicting all components correctly.
The KW interpreter is best with 59% accuracy, and GR and
ML perform poorly with 3% and 10% accuracy, respectively.
Given the noisiness in the corpus, it is not surprising that our
interpreters fail to correctly interpret many of the instructions.
KW’s design goal of handling noisy instructions with no par-
ticular syntax explains why it performs relatively well at this
task.

The errors made by the KW interpreter showcase the dif-
ficulty of the problem faced by automated instruction inter-
preters. Three of the mistakes were due to the instruction not
containing the same label as the page (e.g., click on the
blue words “go to my albums” when the page has a
“click here to go to your album” link). Eight mistakes were
due to command types that our system does not recognize,
such as clicking in a textbox to give it focus.

5

Unlike KW, the ML interpreter can only predict target la-
bels and types that actually appear in the instructions. Users
rarely provided a complete and correct label for targets (e.g.,
instruction I-1 above). Also, the brevity of some instruc-
tions (e.g., press go) made it difficult for ML’s informa-
tion extraction algorithms to correctly extract target labels.
It is likely that domain-specific extraction algorithms will be
required for a learning-based approach to achieve higher ac-
curacy.

8 Conclusion
In summary, we have presented an analysis of and solu-
tions to the problem of automatically interpreting human-
authored how-to instructions. We reported on the collection
of a dataset of written instructions for 43 web tasks, and pre-
sented a qualitative analysis of these instructions. We pre-
sented and compared three different approaches to instruction
interpretation, showing that the machine learning-based al-
gorithm outperforms the keyword-based and grammar-based
algorithms at differentiating between executable instructions
and advice, with 82% accuracy. The keyword-based algo-
rithm performs better at identifying the command described
in executable instructions, with 59% overall accuracy. Our re-
sults indicate that automatic how-to instruction interpretation
shows promise, and may soon enable the creation of systems
that assist users in following hand-written instructions.

Many directions remain for future work. We would like to
implement our interpreters in a mixed-initiative guided help
system and study user reactions to such a system, to verify
that the current level of accuracy is acceptable for general
use. We plan to investigate whether the ML approach can be
redeemed through the use of domain-specific information ex-
traction techniques, perhaps incorporating features from the
more-successful keyword-based parser. Finally, we will val-
idate our results on a larger corpus of scenarios written by a
wider variety of technical users.

References
[Allen et al., 2007] James Allen, Nathanael Chambers,

George Ferguson, Lucian Galescu, Hyuckchul Jung, Mary
Swift, and William Taysom. PLOW: A Collaborative
Task Learning Agent. In AAAI 07: Proceedings of the
Twenty-Second Conference on Artificial Intelligence,
2007.

[coachmarks, 1996] Designing Coachmarks. http:
//developer.apple.com/documentation/
mac/AppleGuide/AppleGuide-24.html, 1996.

[Cohen, 2004] William W. Cohen. Minorthird: Methods for
Identifying Names and Ontological Relations in Text using
Heuristics for Inducing Regularities from Data. http:
//minorthird.sourceforge.net, 2004.

[Collins, 2002] Michael Collins. Discriminative Training
Methods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In EMNLP ’02: Pro-
ceedings of the 2002 conference on Empirical Methods in
Natural Language Processing (EMNLP), 2002.

[Kelleher and Pausch, 2005] Caitlin Kelleher and Randy
Pausch. Stencils-based tutorials: design and evaluation. In
CHI ’05: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 541–550, New
York, NY, USA, 2005. ACM.

[Kittur et al., 2008] Aniket Kittur, Ed H. Chi, and Bong-
won Suh. Crowdsourcing user studies with Mechanical
Turk. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing sys-
tems, pages 453–456, New York, NY, USA, 2008. ACM.

[Lau et al., 2004] Tessa Lau, Lawrence Bergman, Vittorio
Castelli, and Daniel Oblinger. Sheepdog: learning proce-
dures for technical support. In IUI ’04: Proceedings of the
9th international conference on Intelligent user interfaces,
pages 109–116, New York, NY, USA, 2004. ACM.

[Leshed et al., 2008] Gilly Leshed, Eben M. Haber, Tara
Matthews, and Tessa Lau. CoScripter: automating & shar-
ing how-to knowledge in the enterprise. In CHI ’08: Pro-
ceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages 1719–1728,
New York, NY, USA, 2008. ACM.

[Little and Miller, 2006] Greg Little and Robert C. Miller.
Translating keyword commands into executable code. In
UIST ’06: Proceedings of the 19th annual ACM sympo-
sium on User interface software and technology, pages
135–144, New York, NY, USA, 2006. ACM.

[Little et al., 2007] Greg Little, Tessa A. Lau, Allen Cypher,
James Lin, Eben M. Haber, and Eser Kandogan. Koala:
capture, share, automate, personalize business processes
on the web. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
943–946, New York, NY, USA, 2007. ACM.

[Lockerd et al., 2003] Andrea Lockerd, Huy Pham, Taly
Sharon, and Ted Selker. Mr.Web: an automated interac-
tive webmaster. In CHI ’03: CHI ’03 extended abstracts
on Human factors in computing systems, pages 812–813,
New York, NY, USA, 2003. ACM.

[Prabaker et al., 2006] Madhu Prabaker, Lawrence
Bergman, and Vittorio Castelli. An evaluation of using
programming by demonstration and guided walkthrough
techniques for authoring and utilizing documentation.
In CHI ’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 241–250,
New York, NY, USA, 2006. ACM.

[Tomasic et al., 2006] Anthony Tomasic, John Zimmerman,
and Isaac Simmons. Linking messages and form requests.
In IUI ’06: Proceedings of the 11th international con-
ference on Intelligent user interfaces, pages 78–85, New
York, NY, USA, 2006. ACM.

6

http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://minorthird.sourceforge.net
http://minorthird.sourceforge.net

	1 Introduction
	2 Related work
	3 Datasets
	4 Qualitative analysis
	4.1 Labeling web commands

	5 Understanding how-to instructions
	6 Interpretation
	6.1 Keyword-based Interpreter
	6.2 Grammar-based Interpreter
	6.3 Machine learning-based interpreter

	7 Evaluation
	7.1 Recognizing command instructions
	7.2 Interpreting command instructions

	8 Conclusion

