
Mobilization by Demonstration:
Using Traces to Re-author Existing Web Sites

Jeffrey Nichols, Tessa Lau
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

{jwnichols, tessalau}@us.ibm.com

ABSTRACT
Today’s web pages provide many useful features, but un-
fortunately nearly all are designed first and foremost for the
desktop form factor. At the same time, the number of mo-
bile devices with different form factors and unique input
and output facilities is growing substantially. The Highlight
re-authoring environment addresses these problems by al-
lowing users to start with existing sites they already use and
create mobile versions that are customized to their tasks and
mobile devices. This “re-authoring” is performed through a
combination of demonstrating desired interactions with an
existing web site and directly specifying content to be in-
cluded on mobile pages. The system has been tested suc-
cessfully with a variety of existing sites. A study showed
that novice users were able to use the system to create use-
ful mobile applications for sites of their own choosing.

ACM Classification: H5.2 [Information interfaces and
presentation]: User interfaces – Mobile user interfaces

General Terms: Design, Human Factors

Keywords: Mobile web, end-user programming, program-
ming by demonstration, re-authoring, Highlight, Koala,
CoScripter

INTRODUCTION
Use of the web from mobile devices is becoming increas-
ingly popular [10], however only about one-third of all mo-
bile web users are satisfied with their experience [12].
While more web sites now have mobile versions, these sites
are often designed for use on the least functional mobile
device, and provide only a subset of the functionality of the
original site. Moreover, the cost of producing mobile ver-
sions is such that only the most widely-used applications
have them. Less popular applications, such as most enter-
prise software, are rarely supported on mobile devices. Em-

ployees who need to perform tasks on the road are left with
an extremely limited ability to conduct work processes on
their intranets.

Our Highlight system enables end users to re-author mobile
web applications from existing web sites simply by demon-
strating how to complete their task in a desktop browser.
Highlight uses the trace of a user's interaction with an ap-
plication as the basis for creating a task-specific mobile
version of that application. By interacting with only the
controls needed to accomplish a task, a user defines the set
of controls that should be surfaced in the mobile web appli-
cation. Unfortunately, traces are not always sufficient to
capture the richness of interaction needed. Our Highlight
Designer tool lets users interactively “clip” portions of the
original website for display in the mobile version, and gen-
eralize flow by specifying additional paths through the ap-
plication.

A key aspect of Highlight is that it leverages users’ existing
knowledge of web sites. We believe that many of the tasks
users perform on the web are repetitive, particularly those
performed in enterprise web applications. A user that is an
expert at using a particular web site is uniquely positioned
to know how the site is used and what features of that site
could be useful in a mobile version. By making the author-
ing interfaces as simple as demonstrating how to perform a
task using a desktop browser, we are lowering the barrier to
creating mobile web applications. This enables end users to
create their own customized mobile web experience, opti-
mized for the tasks they need to perform and the mobile
device they use to access the content.

In summary, this paper makes the following contributions:

• Algorithms for converting the trace of an interaction
into a mobile web application;

• Highlight Designer, an implemented interactive tool for
creating and modifying mobile web applications; and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

• An empirical evaluation, showing that end users were
able to create useful applications with Highlight, and
that our approach saves significant bandwith over ex-
isting web applications.

IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00 We begin by putting Highlight in context with the related

work in this area. Then we describe Highlight’s user inter-

face through a walkthrough of a user constructing a mobile
version of the amazon.com interface. The next section de-
scribes how we implemented some of the key features of
the authoring environment, followed by a discussion of
Highlight’s architecture. In the next section we evaluate
Highlight through an informal study of novice users creat-
ing applications using the system, in terms of the breadth of
existing sites that it can support, and the benefits to users
through use of a Highlight mobile application as compared
to existing web pages. We conclude with a discussion of the
current system and directions for future work.

RELATED WORK
Early work on creating mobile interfaces focused primarily
on two approaches:

• Automatically modifying existing interfaces based on
heuristic rules or machine learning algorithms

• Creating tools that allow web site builders to model
their site and use those models to create new versions
of their site for multiple mobile devices.

Many of the first systems to create mobile interfaces at-
tempted to use the automatic approach. Digestor [3] used
sets of heuristic rules to modify pages, such as “replace
each text block with its first sentence.” While Highlight
does not use the same automatic approach, it may be useful
to support some of the operations suggested by Digestor,
such as the sentence replacement rule suggested above.
Other automatic approaches have analyzed users’ browsing
history to improve mobile interfaces (e.g. [1]), such as by
increasing the prominence of links that users often follow.
Highlight relies on users’ recollections of their browsing
history to pick the most useful elements of the web site, and
thus the authoring environment might be augmented by
including some indication of previous history in its inter-
face. These automatic schemes were also limited to making
small changes to the interface, whereas Highlight can make
radical changes because the user is directly involved in the
process.

Other systems have used a model-based approach to creat-
ing mobile web interfaces. Vaquita [5] provides a tool and
some heuristic rules for reverse engineering a web page into
a XIML presentation model that could later be transformed
for use on other devices. In contrast, the MDAT system [2]
starts with the designer creating a generic interface model
for their web page and then provides tools to transform the
generic interface for use on a variety of different devices.
Unlike Highlight, these systems require significant knowl-
edge of abstract modeling and programming to use.

A few projects have investigated the idea of allowing end
users to create their own user interfaces from those found
on web sites. Clip, Connect, Clone for the Web (C3W) [7]
is a system that allows users to clip elements from existing
web pages onto a separate panel and then link the elements
together to create useful combined applications. Unlike

Highlight, however, interfaces created in C3W exist en-
tirely on one page and were not designed to work on a mo-
bile device.

d.mix [8] allows users to create mash-ups by combining
elements found in existing web applications. It supports
creation of mobile interfaces, but this appears to require
users to create and edit scripts written in the Ruby pro-
gramming language.

PageTailor [4] is a tool that allows users to remove, resize
or move web page elements while browsing on a mobile
device. The tool runs directly on the mobile device, and
studies have shown that its modification algorithms are
robust to website changes over long periods of time. While
PageTailor can modify the content of pages, it does not
allow users to specify the transitions between pages as
Highlight does. PageTailor also requires the mobile device
to download most of the content of every web page, be-
cause the modification algorithms are run directly on the
mobile device. Highlight only requires the mobile device to
download the content required for the user-designed appli-
cation because its modification algorithms are run on a
proxy server.

Common to all of these approaches, and the approach of
Highlight, is the idea that content will need to be modified
for use on the mobile device. Researchers have also been
designing new interaction techniques in an attempt to repli-
cate the experience of browsing a web page on a typical PC
browser within the constraints of the mobile browsing envi-
ronment. The Apple iPhone’s multi-touch interface is a
particularly good example of this work. While these tech-
niques have had some success, we believe there is still a
place for content modification approaches such as that of
Highlight. Modified interfaces should always be smaller
and easier to navigate than regular web pages. If the modi-
fied pages contain the correct content and features, then
they are likely to be easier to use. We hope that by involv-
ing the user in the design process, the modified pages will
contain the correct content in an easy-to-use format.

THE HIGHLIGHT SYSTEM
Re-authoring is performed through the Highlight Designer
extension to the Firefox web browser running on a typical
PC. A user begins by visiting an existing site and demon-
strating an interaction with the site to include in the mobile
application. As the user interacts, the Designer automati-
cally adds content to the current “pagelet,” a mobile version
of the current page, and creates new pagelets as needed.
While demonstrating an interaction, the user may choose to
explicity add additional content from the existing web page
and rearrange or remove elements already in the current
pagelet. A storyboard-style interface gives the user a visual
overview of the application and allows the user to return to
previous locations in the mobile application. This enables
the user to demonstrate alternate actions that might be taken
while interacting with the mobile application or to help the

Designer generalize its knowledge of interactions that were
previously observed. Once the user has finished, a descrip-
tion of the application can be saved to a proxy server that
will allow access to the application from mobile devices.

A novel feature of Highlight is that it allows users to author
both the content of mobile pages and the sequences of in-
teractions that characterize the transitions between pages.
This feature allows users to create mobile applications with
a page structure that differs from that of the existing web
site. For example, a mobile application can skip over un-
necessary web pages, allowing users to perform a minimum
of interaction in order to complete their task.

Interface Walkthrough
We illustrate the use of our system by walking through an
example scenario in which Amy creates a mobile applica-
tion using the Highlight Designer to buy a single item from
amazon.com.

The Designer opens in a Firefox sidebar to the left of the
main browser window (see Figure 1a). This sidebar con-
tains two main parts: a storyboard, in the top pane, which
contains a node-and-arrow overview of the application be-
ing created, and the preview browser showing the current
pagelet in the mobile application. Amy starts by typing “a-
mazon.com” into the browser's location bar and loading the
retail site. Highlight records this event as one of the initial
events required to set up the application. She then selects
“Books” from the category drop-down list, types her search
term into the search box and presses the “Go” button to
initiate the search. As she performs these actions, the De-
signer automatically clips the widgets with which she is
interacting, as well as a label or other descriptive text that
explains their use. Thus, the Designer adds the drop-down
list, the search box, labels for both, and the search button to
the current pagelet, and those items are displayed in the
sidebar’s preview browser. All of these clips are made auto-
matically, just by virtue of Amy's trace of interactions with
the web site.

The search resulted in a list of hits being displayed in the
main browser. Amy wants to clip all of these results for
display in the mobile application. She clicks the “Add Con-
tent” button in Highlight. Now, as she moves the mouse
over the browser, portions of the web page are highlighted
in red, indicating the region of the page that would be
clipped. Amy moves the mouse such that all of the results
are contained within the red box, and clicks to clip that re-
gion. These search results appear in the preview browser.
In addition, a new pagelet is automatically constructed
(“Search results”), and added to the storyboard. The story-
board now contains two pagelets, one containing the search
interface, and a second containing the list of search results
(see Figure 1a).

Next, Amy clicks on one of the items for sale. The item
page is displayed in the main browser. On this page, she is

interested in the item information such as the name and the
purchase price. She uses the “Add Content” button again to
clip the region containing these details to her application,
adding a third pagelet (“Item details”) to the storyboard.

Amy wants to be able to purchase the item with her applica-
tion, so she clicks the “Add to Shopping Cart” button on the
item description page. The next page is an overview of the
current shopping cart. Amy’s goal is to create an applica-
tion for buying a single item, so she decides not to include
any content from this page and clicks on the “Proceed to
Checkout” button. Highlight chooses not to create a pagelet
that includes this button because the page would have only
included one button. Highlight does not create such pages
by default because they typically add an additional naviga-
tion step without any interactive value. The click on the
“Proceed to Checkout” button is recorded as part of the
transition to the next pagelet however, which ensures that it
will automatically happen when the mobile application is
executed.

The next page requires a login/password to continue. By
typing in her amazon.com username and password, these
widgets are automatically clipped and used to populate the
fourth pagelet in the application (“Sign in”). On the next
page, which is a confirmation of the order, she uses the
“Add Content” button to create a new pagelet with informa-
tion such as the final price of the order and the shipping
address. At this point, Amy could click the “Place Your
Order” button to place the order, which would also auto-
matically add that button to her pagelet. Because she is just
specifying an example however, she does not actually want
to buy the item. Instead she uses the “Add Content” button
in the sidebar to highlight the “Place Your Order” button
and add it to the current pagelet, which completes the basic
structure of her application.

At any point, Amy can test her application by double-
clicking on the pagelets in the storyboard to return to previ-
ous pages. Currently, this is the only interaction supported
with the storyboard interface. Returning to the “Search re-
sults” pagelet, the main browser navigates back to the
search result page, and the clipped search results are re-
freshed in the preview browser. Amy clicks on a different
item this time. When she does this, Highlight detects that
she has performed an action that looks very similar to an
action she performed previously, and asks if she wishes to
generalize them. By saying “yes”, Amy is indicating that a
click on the title link of any of the items in the search result
pagelet should lead to the item detail pagelet. The next time
she returns to the search result page and clicks on a differ-
ent item, she will automatically be redirected to the appro-
priate “item detail” pagelet.

As a final step, Amy can add the functionality of navigating
across multiple pages of search results, which is available
on the amazon.com site by clicking links at the bottom of
the page. Amy can start adding this functionality by return-

ing to the search result pagelet in the storyboard, and then
clicking on the “Next” link at the bottom of the search re-
sults page. Clicking on the link takes the main browser to
the next page of search results. Amy now has two options to
create the interface that she desires. She could use the “Add
Content” button to add the search results content to her
pagelet, as she did previously. The Designer will recognize
that this new pagelet is similar to the previous search results
pagelet, and it will ask Amy if she would like to use her
previous pagelet. Answering “yes” to this question creates a
looping edge from the “Search results” pagelet back to it-
self. Alternately, Amy could have explicitly specified that

the “Search results” pagelet should be used by selecting it
from the drop-down list in the preview browser. To make
the rest of the search page navigation links work, Amy can
click one of the other links. The Designer will detect that
this link click is similar to the “Next” click, and ask if she
wants to generalize. By answering “yes,” Amy will tell
Highlight to generalize all of the search navigation links.

Through a mixture of demonstrating how she interacts with
the application, and using clipping regions to select desired
content on each page, Amy has constructed an application
that allows her to search for and purchase items via a light-

a.

Search Search Results Item Details Sign In Place Order

b.

Figure 1. a) The Highlight Designer running inside of the Mozilla Firefox web browser. This screenshot was taken from the
“Search results” pagelet after construction of the amazon item purchasing example. b) An overview of the final amazon mobile
application.

Storyboard

Preview
Browser

weight web interface suitable for use on mobile devices.
When this interface is loaded into her mobile device (see
Figure 1b), she will be able to search for items by name,
navigate through the list of search results, see item details
for a particular item, and purchase that item. The interface
is optimized for the task that Amy wishes to do with this
website, and contains only the subset of the amazon.com
application that is relevant to her task.

Implementation
Highlight Designer works by recording the actions a user
takes in the browser, and converting these actions into a
mobile application description. Mobile applications are
represented as a directed graph of “pagelets.” Each pagelet
represents one page that might be seen on the mobile de-
vice. Pagelets are described in two parts:

• Content operations that describe how the pagelet’s
content will be constructed from the content of the
page on the existing site.

• Transition events that describe the navigation element
in the pagelet that causes a transition to the next page-
let. These events also store the sequence of interac-
tions that were demonstrated on the existing web site
to reach the page from which the next pagelet’s con-
tent will be clipped. Each transition is represented by
an arrow on the storyboard view.

Content Operations
The most common content operation is extracting some
content from the existing web page and adding it to a page-
let. When a user interacts with a form field, such as a text-
box or a radio button, this field is clipped and added to the
Highlight application. In addition, a descriptive label is
generated for some elements whose function is not obvious
from their appearance alone; these include text boxes,
dropdown list boxes, check boxes, and radio buttons. The
label is determined by first looking for labels or captions
specified in the HTML; if these are not present, heuristic
rules (borrowed from CoScripter [9]) are used to extract
textual content close to the target element that might plau-
sibly constitute that element's label.

Content can also be clipped using the “Add content” tool,
rather than by directly interacting with the page. This form
of clipping is used to add read-only content to the mobile
application, such as a flight status or a weather report, or to
add multiple related interactive elements simultaneously,
such as the search results in the amazon application. An-
other use is to add content for future use that should not be
activated at this time, such as the “Place your order” button
in our amazon scenario. When the “Add content” button is
selected, moving the cursor around on the web page causes
a red box to be drawn around the HTML element currently
in focus. By moving the mouse, the user can select the tar-
get element to be clipped. Multiple elements can be clipped
by invoking “Add content” for each item.

The Designer also supports the “move” and “remove” con-
tent operations, which allow users to modify content al-
ready added to the pagelet. These operations are supported
by interactions in the preview browser. Clicking on an item
will select it, and then that item can either be dragged to
move it to a new location or removed by clicking the “Re-
move” button.

Transition events
The Designer also records the series of interactive steps that
the user demonstrated in order to transition from one page-
let to the next and stores this in a transition event. For ex-
ample, in the amazon.com walkthrough the transition event
from the “Item details” pagelet to the “Sign in” pagelet
would contain the steps “click on the Add to Shopping Cart
button” and “click on the Proceed to Checkout button.” The
following steps would have been recorded from the “Sign
in” pagelet to the final “Confirm Order” pagelet: “enter
<username> into the Login: textbox,” “enter <password>
into the password textbox,” and “click the Login button.”
Note that all of the user’s operations are stored in the transi-
tion event, even those that may have caused some content
to be clipped into the pagelet. All of these steps are in-
cluded in the transition event so that the Designer can keep
the browser and application in sync when the user double-
clicks in the storyboard interface. Each transition event con-
tains steps that were recorded from when the user created or
navigated to the current pagelet and end when the user cre-
ates or navigates to a new pagelet.

Identifying Elements On A Web Page
Both content operations and transition events must be able
to identify web page elements in a repeatable manner. This
allows the same content to clipped for a pagelet every time
it is shown and allows the steps specified by an event to be
replicated properly on the web page.

The Highlight Designer uses a combination of two ap-
proaches to identify web page elements: XPath express-
sions [6] and a heuristic representation (“slop”) pioneered
by the CoScripter system [9]. XPath has the capability of
precisely describing any element on a web page, but its
expressions are often prone to failure if the page structure
changes even slightly. CoScripter’s slop uses textual de-
scriptions and heuristics to identify elements on the page
(e.g., “the Advanced link” refers to an <a> element contain-
ing the text “Advanced”). CoScripter slop is much more
robust to page changes, however it was designed to identify
small functional elements, such as textboxes and buttons, so
it is not capable of describing non-interactive content re-
gions on the page. Because slop interpretation is heuristic, it
is possible that in some cases the interpreter will produce an
incorrect match, creating an application that does not work
even though it might appear that it should.

Slop is a good match for transition events because it was
designed to represent traces of interactions with web pages.
Currently we record both the slop representation and an

XPath expression for each event. If the XPath expression
fails to find the correct element, then we can recover by
trying to interpret the slop instead.

However, slop is less useful for representing content opera-
tions such as clipping a region of the page. Because Co-
Scripter's focus has been on capturing user interactions with
a web page, it does not contain instructions for selecting
arbitrary content on the page. Although we have enhanced
the slop interpreter in Highlight to be able to understand
human-written instructions, such as “clip the table contain-
ing Flight Status”, we have yet to devise intelligent algo-
rithms for recording slop based on user demonstrations.
Thus, Highlight relies on XPath expressions to specify ele-
ments that are the targets of content operations. It is an area
of future work to incorporate more robust methods for de-
scribing regions to be clipped.

Generalizing Transition Events and Pagelets
We observed early on in the development of the Designer
that many web applications have repetitive page structures,
such as the search pages we saw in the amazon.com appli-
cation example. There are two types of repetition that we
wanted to support with the Highlight Designer:

• Some sites have multiple paths to get to the same type
of page. For example, the “Item details” page on ama-
zon.com can be reached both from searching and
browsing through the site’s product hierarchy.

• Some pages, such as pages of search results, contain
repetitive blocks of content. Often there will be simi-
lar interaction elements in each of these blocks, such
as a link on a heading, that lead to a similar page.

To support creating a mobile application for web sites with
these characteristics, we wanted to add a set of lightweight
interactions that would allow users to specify that an exist-
ing pagelet should be re-used and that a set of links all lead
to the same pagelet.

We created two techniques for allowing users to specify
that a pagelet should be re-used. These methods are both
needed once the user has navigated to a new page and is
about to clip content to create a new pagelet. The first
method is explicit. If the user immediately recognizes that
they wish to re-use a pagelet, then they can select that page-
let from a drop-down list in the sidebar and the existing
pagelet will immediately be applied. The second method is
implicit. If the user does not recognize that an existing
pagelet might be re-used, then they will begin clipping con-
tent from the new page into the pagelet. The Designer will
analyze the XPath locations of the content as it is clipped,
and if it appears to match a previous pagelet then the sys-
tem will offer to replace the new pagelet with the old one.
To reduce annoyance, the system will only ask this question
once for each new pagelet.

In order to specify that a set of links all should lead to the
same pagelet, the user must first specify a trace using one of
the links in the set. In the amazon.com example above, re-
member that Amy clicked on the first result and created a
pagelet for the result item before returning to the search
results pagelet. When the user returns to the results pagelet
and clicks on another link in the set, Highlight will analyze
the new event and compare it to previous events. Specifi-
cally, it will look for similarities in the event interactions
that caused the mobile pagelet to advance to a next page.

Our current algorithm for detecting similarities in events is
as follows. First, we test to see if the events were of the
same type. Clicking a link cannot be the same as pressing a
submit button, for example. Second, we examine the XPath
expressions of the elements involved in the two events. For
example, in the amazon.com example the XPaths for the
two search result links were:

First link: /HTML[1]/…/TBODY[1]/TR[1]/TD[1]/A[1]

Second link: /HTML[1]/…/TBODY[1]/TR[2]/TD[1]/A[1]

The Designer considers events to be generalizable if the
XPath expressions differ only in the indices, such as for the
TR element in the amazon example. This means that the
elements are located in much the same place in the web
page but are offset by some repetition of structure. Often
this will occur when items are located in the same relative
location within different cells of a table. The particular in-
dices at which the elements differ are saved.

If the events are generalizable, then the system will identify
the pagelet to which the previous event leads and ask the
user if that pagelet should be the target for all similar links.
If the user says “yes,” then the two events are combined
into a single event. The new event remembers the XPath
indices that differed between the two events that created it
and any future interaction with an element that has an
XPath that differs only in those indices will cause the mo-
bile application to follow that event. In our experience, this
mechanism has worked well for a variety of search result
pages, and has also been shown to be useful in other con-
texts, such as category browsing pages with many links.
This heuristic does have limitations however, particularly in
situations where repeating chunks of content are not com-
pletely identical. For example, some forms of eBay
searches will return a list of results, but the format of each
particular item in the list will vary depending on the auction
type for that item.

Architecture
In order to make mobile applications available outside of
the Designer, we have implemented a proxy server compo-
nent that serves mobile applications based on existing sites.
When the user wishes to access a mobile application, they
navigate their mobile browser to the proxy server’s main
page, select their application from a list of available appli-
cations, and then proceed to use the application.

The proxy server component and the application descrip-
tions it uses are described elsewhere [11], however we will
briefly describe them here. The proxy server is imple-
mented as a typical web server that contains a fully func-
tional Firefox web browser as a component. Selecting an
application establishes a session with the server and causes
the proxy server’s Firefox browser to automatically navi-
gate to the page of the existing web site that corresponds
with the first pagelet in the mobile application, execute the
content operations of that pagelet, and return the HTML of
this content to the mobile device. Subsequent requests from
the mobile device are matched to a transition event for the
current pagelet, any form data from the mobile device is
filled in appropriately, and then the proxy browser advances
to the next page based on the interactions specified by the
event. Thus, the interface between the proxy server and the
mobile device is similar to a remote control in that each
request by the mobile browser specifies a series of user
interface operations for the proxy browser to perform in
order to get the contents of the next mobile page. For ex-
ample, the proxy server might fill in some form fields, press
the submit button, and navigate through several subsequent
pages before the constructing the next mobile page.

The use of a proxy server provides several advantages.
First, only the clipped content is sent to the mobile device,
resulting in fast load times despite slow network connec-
tions. Second, because the browser running on the proxy is
a full-fledged desktop browser, any “client-side” JavaScript
from the existing web site can be executed in place, rather
than relying on the mobile device's (often poor) JavaScript
support. This feature enables the proxy server to serve mo-
bile versions of Ajax applications, although the Highlight
Designer does not yet support authoring mobile applica-
tions that make use of Ajax.

INTEGRATION WITH COSCRIPTER
Since Highlight makes use of traces of user interaction with
web applications to construct interfaces, we extended it to
make use of a large repository of such traces as collected in
the CoScripter project (formerly known as Koala [9]).

CoScripter is a programming by demonstration system for
Firefox that records user actions performed in the browser
and saves them as pseudo-natural-language scripts. Co-
Scripter's representation for scripts is a plaintext language
with steps consisting of commands such as “go to
http://google.com”, “type coscripter into the search box”,
and “click the Search button”. These steps are both human-
and machine-understandable, resulting in scripts that are
easy for people to understand yet interpretable by a ma-
chine.

Scripts are automatically saved to a central wiki for sharing
with other users. The CoScripter community has created
thousands of scripts for web-based tasks such as checking
stock prices, creating trouble tickets, and managing queues
in a call center [9].

This repository of scripts provides a wealth of information
about the tasks people do with web applications. It also
provides an excellent starting point for the creation of High-
light applications, particularly if we could enable CoScrip-
ter users to import their scripts into Highlight and, with
little or no effort, be able to complete their tasks from a
mobile device.

Thus, we added the capability to Highlight to create a new
application from a CoScript. When a script is loaded, High-
light uses CoScripter's interpretation component to pro-
grammatically run through the script, clicking on buttons
and entering text as if the user had done these actions di-
rectly. Meanwhile, Highlight records the actions and uses
them to construct an initial application.

One piece missing from the CoScripter language was the
ability to specify portions of the content of the web page to
be clipped, akin to using Highlight's “Add content” tool.
Thus, we extended CoScripter's language with an additional
type of instruction to describe regions to be clipped. These
instructions take the form “clip the table containing Flight
Status”, and are parsed by Highlight and turned into an
XPath expression that select the smallest table element in
the document that contains both the words “Flight” and
“Status”.

With this addition to the CoScripter language, users are able
to import scripts directly from the CoScripter wiki into
Highlight and have a fully-functional mobile application
with no additional authoring work. Once the script has been
imported into Highlight, any of Highlight Designer's inter-
active features can be used to modify the application in
order to customize it further for one's mobile device.

This integration reduces the cost of authoring mobile appli-
cations even further, because Highlight users are able to
take advantage of already-created scripts for completing
common tasks on the web.

EVALUATION
We have evaluated the Highlight Designer by informally
testing it with several users and by performing an empirical
comparison of Highlight interfaces with the corresponding
unmodified interfaces.

Informal User Study
We conducted an informal user study to help us understand
whether users would understand interacting with the system
and be able to create applications of their own.

Three subjects from our research lab participated in the
study. Two of the subjects were male, one was female, and
all three came from different age groups. The subjects were
not regular users of the mobile web, either because they did
not own devices that were capable of it or they did not be-
lieve its benefits were worth paying for the service. They all
were able to recall instances in which they would have liked
to access the web in a mobile setting however, for example

to look up nearby restaurants, get directions, get movie
times for a local theater, view current traffic, or access web-
based e-mail.

We gave the subjects a very brief verbal introduction to the
system and then asked them to create two mobile applica-
tions that would allow them to explore the system’s capa-
bilities. For the first application, we asked subjects to create
a two-pagelet mobile application from mapquest.com. The
first pagelet was to contain the fields for entering an address
and the second pagelet was to contain some information
about that location. Note that we would have asked our sub-
jects to clip the resulting map, but the maps on
mapquest.com are generated from client-side JavaScript
and are not easily replicated by simply copying their
HTML. At the time, we did not have Designer support for
clipping portions of a web page as an image.

The second application was a three-pagelet simplified ver-
sion of google image search. The first pagelet was to con-
tain the search textbox and button, the second pagelet was
to contain the grid of search results, and the final pagelet
was to contain the full-size version of an image selected
from the results (see Figure 2 for a finished example of this
application). Subjects were required to create a mobile ap-
plication that skipped over a page of the existing site (an
extra page exists in google image search to show the image
in the context of the page in which it was found) and to use
the generalization features of the Designer in order to com-
plete their application.

All of our subjects were able to build the first two applica-
tions, though there was a clear learning curve to using the
tool. In particular, users were initially unclear on when to
expect the system to add content for them as compared to
when they should add content explicitly. After creating the
applications, users seemed to form a clearer model of what

the system was capable of doing automatically. We also
found that the Designer’s capabilities for allowing users to
make and then fix mistakes were lacking. Users would of-
ten explore a site to understand the possible interactions
before choosing one for their application. While the De-
signer has some capabilities for changing and rearranging
the content within a pagelet, it needs more facilities for
changing the storyboard structure after the initial recording.

After creating the two applications, we asked users to think
of an interesting mobile application that they would like
and then try to create it using the Designer. With just this
instruction, our subjects were able to successfully create
applications for the San Francisco Chronicle’s Bargain
Bites web site and the weather.com 10-day forecast. The
subject who created the Bargain Bites web site was particu-
larly happy, because the subject had been manually creating
a mobile version of this site and syncing it with a PDA.

Our third subject attempted to create a traffic application
from the www.beatthetraffic.com web site, but unfortu-
nately this site used a great deal of client-side JavaScript
code that the Designer was not able to correctly interact
with in order to playback the application. A different sub-
ject also attempted to create a mobile application from
gmail, but gmail’s Ajax features prevented the Designer
from working correctly.

Although the subjects occasionally ran into difficulties
while learning to use the system, they encountered few
problems with the Designer’s UI while creating their third
application. At the conclusion of the study, all of the sub-
jects reported that they were excited about the technology
and wanted to use it in their everyday lives.
Breadth and Benefits
Using the Highlight Designer, we have created working
mobile applications from both popular and niche web sites.
These sites include aa.com, amazon.com, ebay.com,
google.com, mapquest.com, sfgate.com, weather.com, and
many others. In our experience, the Designer works best
with pages that use a minimal amount of client-side
JavaScript. The Designer seems to work with pages that use
scripting for small UI features, such as highlighting an item
when the mouse moves over it, but will likely break if the
page’s DOM is manipulated or new content is loaded via an
XmlHttpRequest. We are exploring how to extend the De-
signer to work with pages that contain these features.

In order to understand the benefits of using a Highlight mo-
bile application, we compared performing a task using a
Highlight mobile application to performing the same task
using the original interface on a mobile web browser with
desktop browser features, such as Minimo or Opera Mobile.
Some of the problems with mobile web browsing include
small screens that are only able to display a few UI ele-
ments at a time and slow networks and processors that re-
sult in delayed page rendering.

a.

b.

Figure 2. Overviews of the pagelets and structure of the (a)
google image search and (b) AA flight status mobile apps.

The small screens found on today's mobile devices make it
difficult to navigate interfaces that have many clickable
elements. For example, the front page of American Air-
lines' web site has 298 distinct elements that can be clicked
on or interacted with. One benefit to using Highlight is that
task-driven mobile interfaces can reduce screen clutter to
only those controls that are necessary for the task at hand.
To measure the value of this claim, we calculated the total
number of interactive elements (form fields, links, and but-
tons) that are displayed in the original application versus
the Highlight application, throughout the course of perform-
ing each task (see Table 1). While not a perfect measure,
this number approximates the complexity of the interface in
terms of the number of options the user must sift through in
order to complete her task.

The results show that the number of interactive elements in
the Highlight application is drastically reduced compared to
the original application. The reduction is greatest for large,
multi-purpose web sites where Highlight's task focus makes
it possible for the user to concentrate on the elements that
are required for the task at hand, and ignore all the elements
used to access irrelevant portions of the application.

Another problem with mobile web browsing is slow net-
works and costly page rendering. To show how Highlight
addresses this problem, we have measured the amount of
bandwidth required to download the set of pages (and asso-
ciated content, such as images and scripts) required to com-

plete a task using Highlight vs. the original website (see
Table 1). All Highlight applications were significantly
smaller than their unmodified counterparts. The applica-
tions that exhibited the least reduction in size were all ones
that forwarded lists of results to the mobile device (e.g.,
choices of food items or listings of real estate)—all of
which represented data that would have had to be transmit-
ted to the client device in any case.

DISCUSSION AND FUTURE WORK
In this paper, we have described a method of designing mo-
bile web interfaces based on user demonstrations of an in-
teraction trace through an existing web site. While the De-
signer allows users to then expand upon and improve their
mobile application, we have observed that quite often a
single trace is sufficient for creating a useful mobile appli-
cation. This is especially apparent through the integration of
Highlight with CoScripter. CoScripts are linear traces by
nature, and we were able to find a number of existing
scripts that could be turned into useful applications (many
of which are listed in Table 1).

Of course, without the Designer it would be impossible to
create applications with non-linear structures or with the
ability to perform a search and navigate through the results.
An important capability of the Designer is allowing the user
to demonstrate two different interactions and have them
generalized across a larger set of possible interactions. Our
current generalization scheme is a heuristic based on the
format of XPath expressions, which has been successful but
could be improved. In particular, we would like to design
an algorithm that detects repetitive chunks of content in the
pagelet and then generalizes based on the detected repeti-
tion.

A current limitation of the Designer is its inability to sup-
port automating sites that use a lot of client-side JavaScript,
particularly Ajax sites. We believe that it may be possible
to extend the Designer to support these sites by extending it
to also record the changes that occur in the website as the
user interacts. Currently, the Designer only records the
user’s input and makes assumptions about the changes that
can result in the interface based on the operation. An exam-
ple assumption is that a new pagelet is only needed after a
user clicks on a link or presses a submit button; these events
typically trigger a new page to be loaded. For an Ajax site,
a new page may never be loaded and the transition to a new
pagelet may occur following any type of interaction. Re-
cording changes to the web page may allow us to track
when pagelet changes should occur and allow the creation
of applications from Ajax sites.

With many data entry tasks, some fields will always contain
the same value (e.g., your address) while some fields (e.g.,
the item you are searching for) will change each time the
task is run. Currently, Highlight prompts the user to enter
data into every field in the mobile application, placing an
unnecessary burden on the user. However, in future work

Table 1. A comparison of interactive elements and the
amount of data downloaded for applications created using
the Highlight Designer and the desktop web sites used for
the same task.

Interactive
Elements Size (kB)

Description Orig Hilght Orig Hilght
Percent

Size
Check status
of AA flight

736 3 711 3.6 0.5%

Update Face-
book status

217 5 296 0.5 0.2%

Find nearby
Wi-fi hotspot

74 18 1072 2.8 0.3%

Get weather
in my area

486 6 1079 7 0.6%

Sprint cell-
phone usage

175 6 739 4.6 0.6%

Log today’s
exercise

128 4 393 0.9 0.2%

Update Fitday
food diary

169 38 145 12.7 8.8%

Get calories
for food

88 16 63 11.5 18.3%

Real estate in
my area

274 35 1036 194.1 18.7%

Show trip
itineraries

77 17 726 42.7 5.9%

Find Amazon
book price

823 4 844 4.1 0.5%

we plan to improve this process by learning from the user's
previous behavior on this task and identifying fields that
always contain the same value on every run through the
task. One option would be to pre-fill form fields with the
most common value, enabling the user to change it if neces-
sary but accept the default with no effort; another more
drastic change would be to remove constant-valued fields
from the pagelet displayed to the user, while still filling in
the target value on the proxy server.

We found in our user studies that the user interface of the
Designer is not very forgiving when users make mistakes or
want to explore the existing web site. One of our initial
assumptions was that users would be experts with the sites
they are mobilizing, but this may not always be the case and
certainly it should be possible to recover from mistakes. We
may be able to address some of these issues by providing
more interaction through the storyboard interface, such as
by allowing extra pagelets to be removed. It may also be
valuable to provide a separate interface that shows a verbal
description of the interaction steps that have been recorded,
similar to CoScripter, and allows the user to edit their ap-
plication at a different level.

The Highlight Designer is explicitly not a model-based tool.
When users create applications however, they do identify
both the interactive elements of a useful application and the
contextual information that is needed to use the application.
This information could be useful for creating a model of the
web site. If multiple applications were created for the same
site, then we might be able to combine information from
those applications to create a more detailed model. Such a
model could allow previous work in model-based research
to be more easily applied to existing sites.

CONCLUSION
We have presented Highlight, a system enabling end users
to create task-based mobile web applications simply by
demonstrating how to perform a task on an existing applica-
tion. Highlight uses the trace of a user's interaction to auto-
matically clip the relevant controls for presentation in the
mobile application, and enables users to visually point and
select non-interactive content for inclusion in the applica-
tion as well. Moreover, we have integrated Highlight with
an existing repository of traces from the CoScripter system,
which can be used to create Highlight applications with
little or no additional effort. An informal user study shows
that novice users are able to use Highlight to create useful
mobile applications of their own choosing. An empirical
evaluation shows that for a broad range of tasks, Highlight
is capable of creating an application that is smaller and eas-
ier to use on mobile devices. In short, Highlight enables
ordinary users to mobilize their tasks and take them on the
road wherever they go.

ACKNOWLEDGMENTS
We thank our user study participants for helping us evaluate
Highlight, and the CoScripter team for their valuable com-
ments.

REFERENCES
1. Anderson, C.R., Domingos, P., and Weld, D.S. “Personal-

izing Web Sites for Mobile Users,” in Proceedings of the
10th international conference on World Wide Web. 2001.
Hong Kong. pp. 565-575.

2. Banavar, G., Bergman, L., Cardone, R., and Chevalier, V.,
“An Authoring Technology for Multidevice Web Applica-
tions.” IEEE Pervasive Computing, 2004. 3(3): pp. 83-93.

3. Bickmore, T.W. and Schilit, B.N. “Digestor: Device-
independent Access to the World Wide Web,” in Selected
papers from the sixth international conference on World
Wide Web. 1997. Santa Clara, CA. pp. 1075-1082.

4. Bila, N., Ronda, T., Mohomed, I., Truong, K.N., and Lara,
E.d. “PageTailor: Reusable End-User Customization for
the Mobile Web,” in Proceedings of MobiSys. 2007. San
Juan, Puerto Rico. pp. 16-25.

5. Bouillon, L., Vanderdonckt, J., and Souchon, N. “Recov-
ering Alternative Presentation Models of a Web Page with
Vaquita,” in Computer-Aided Design of User Interfaces
III. 2002. pp. 311-322.

6. Clark, J. and DeRose, S., “XML Path Language (XPath),
Version 1.0,” 1999. http://www.w3.org/TR/xpath.

7. Fujima, J., Lunzer, A., Hornbaek, K., and Tanaka, Y.
“Clip, connect, clone: combining application elements to
build custom interfaces for information access,” in Pro-
ceedings of the 17th annual ACM symposium on User in-
terface software and technology. 2004. pp. 175-184.

8. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
“Programming by a Sample: Rapidly Creating Web Ap-
plications with d.mix,” in Proceedings of the 20th annual
ACM symposium on User interface software and technol-
ogy. 2007. Newport, RI. pp. 241-250.

9. Leshed, G., Haber, E., Matthews, T., and Lau, T. “Co-
Scripter: Automating & Sharing How-To Knowledge in
the Enterprise,” in Proceedings of CHI. 2008. Florence,
Italy. To Appear.

10. MDA, “Q3 2006 – Mobile Internet Figures Continue To
Grow,” 2007.
http://www.themda.org/PressReleases/Page_Press_PressR
eleases_LatestStats.asp.

11. Nichols, J., Hua, Z., and Barton, J. “Highlight: Mobilizing
Existing Ajax Sites Using a Web Browser Inside a Proxy
Server,” Submitted for Publication.

12. OPA, “Going Mobile: An International Study of Content
Use and Advertising on the Mobile Web,” 2007.
http://www.online-publishers.org./media/
176_W_opa_going_mobile_report_mar07.pdf.

http://www.w3.org/TR/xpath
http://www.themda.org/PressReleases/Page_Press_PressReleases_LatestStats.asp
http://www.themda.org/PressReleases/Page_Press_PressReleases_LatestStats.asp
http://www.online-publishers.org./media/176_W_opa_going_mobile_report_mar07.pdf
http://www.online-publishers.org./media/176_W_opa_going_mobile_report_mar07.pdf

	ABSTRACT
	ACM Classification: H5.2 [Information interfaces and presentation]: User interfaces – Mobile user interfaces
	General Terms: Design, Human Factors
	Keywords: Mobile web, end-user programming, programming by demonstration, re-authoring, Highlight, Koala, CoScripter

	INTRODUCTION
	RELATED WORK
	THE HIGHLIGHT SYSTEM
	Interface Walkthrough
	Implementation
	Content Operations
	Transition events
	Identifying Elements On A Web Page
	Generalizing Transition Events and Pagelets

	Architecture

	INTEGRATION WITH COSCRIPTER
	EVALUATION
	Informal User Study
	Breadth and Benefits

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

