Towards conversational interfaces to web applications

Tessa Lauf, Julian Cerruti*, Morgan Dixon*, Jeffrey Nichols'

tIBM Research — Almaden
650 Harry Road
San Jose, CA 95120 USA

*IBM Argentina
Ing. Butty 275 - C1001AFA
Buenos Aires, Argentina

*Computer Science &
Engineering
DUB Group, University of
Washington

tessalau@us.ibm.com

ABSTRACT

Today’s conversational interfaces are largely based on the
paradigm of information retrieval from databases. In this
position paper, we propose a radically different approach:
building CIs on top of existing web applications. Such a
system will draw together research in task modeling, web
usage mining, information extraction, as well as the vast
amount of existing research on traditional Cls.

1. INTRODUCTION

Conversational interfaces are an alternative to traditional
graphical interfaces as a means for people to interact with
computers. As computing moves to smaller mobile devices
with limited I/O capabilities, conversational interfaces in-
crease users’ ability to access information while on the move
— anytime, anywhere. Moreover, conversational interfaces
could also enable persons with disabilities access to IT ser-
vices that they were formerly unable to access.

Much past work on conversational interfaces has focused
on the information retrieval task of selecting and filtering
records from a database [21]. In this position paper, we
propose a radically different approach to creating conversa-
tional interfaces: building them on top of existing web ap-
plications. Unlike databases, web applications are designed
for humans to interact with. Web user interfaces provide a
vocabulary and structure with which to describe tasks that
can be accomplished online: getting traffic information, find-
ing product reviews, signing up for a newsletter, or paying
bills. Therefore, we believe that it will be possible to create
general-purpose conversational interfaces that enable users
to do anything they could do on the web, through conversa-
tion.

At first glance, creating conversational interfaces for arbi-
trary web applications is tremendously challenging. Every
website is different; there is a enormous variation in the
types of tasks that can be accomplished using the web. The
web is designed for people to use visually; the state of the
art in screenreaders for blind users [5] is still very cumber-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

some. Crafting easy-to-use conversational interfaces seems
to require custom programming specific to each website.

Yet the design of web applications leads us to believe that
automatic construction of conversational interfaces (Cls) for
arbitrary websites may be possible. For example, web appli-
cations make use of common visual structures for menus or
navigation bars; these structures can be reverse engineered
using heuristics that rely on page geometry and layout [6].
As another example, the labels of links and buttons on web
applications (e.g., “find flights” or “buy ticket”) give clues as
to the tasks that can be accomplished. All of this is possi-
ble due to the open standards on which the web is based,
which allow programs to examine the structure of web appli-
cations. We believe that this open model, combined with re-
cent advances in web usage mining, information extraction,
and task modeling, enable the creation of rich, interactive
ClIs based on existing web applications.

The remainder of this paper is organized as follows. First
we provide a brief overview of prior work in database-oriented
conversational interfaces. Then we explore in more depth
the differences between database-backed Cls and web-based
CIs. Finally, we conclude with observations and directions
for future work.

2. PRIOR WORK

Conversational interfaces have been around for a long time;
Zue and Glass [21] provide a good survey of the literature.
Due to the difficulty of developing general-purpose Cls, they
tend to be targeted at a specific domain, such as train sched-
ules [1], restaurants [18], job listings [19], or call routing [8].

The predominant paradigm for Cls assumes that they are
interfaces to a database and that the user is performing an
information retrieval task from the database. Early research
in CIs investigated how to make them easily transportable
across arbitrary databases with little programming effort [9].
Systems such as SpeechBuilder [7] proposed a framework to
make Cls easier to develop by plugging together existing
components. Despite such efforts, Cls are still not in wide
use for general-purpose tasks such as those found on most
websites.

More recently, conversational interfaces such as Sirit (the
basis for Apple’s iPhone Assistant), Google’s Talk Guru?,
and Vlingo® provide chat-based interfaces to a handful of
services such as weather forecasts, movies, and restaurants.

"http://siri.com
http://guru.googlelabs.com
3http://vlingo.com

Similar to traditional Cls, these systems provide access to
only a limited set of services, rather than arbitrary web
tasks.

Several research efforts have focused on developing par-
allel webs that facilitate voice-based access via conversa-
tional interfaces. The Spoken Web [12] creates a parallel
telephone-based “web” of information based on audio record-
ings. VoiceXML * is a W3C standard for specifying inter-
active voice dialogues, analagous to HTML for GUI appli-
cations. The Semantic Web [3] will enable agents to se-
mantically interact with semi-structured information on the
web, without having to interpret human-readable web pages.
However, for the time being, the vast majority of services to-
day are only accessible via the web. Therefore, we believe
that conversational interfaces can and should be built on top
of existing websites to give them the broadest impact.

3. CONVERSATIONAL INTERFACES FOR
THE WEB

The most important component in a CI is the task model,
which defines what a user can do using the interface. Re-
lated to the task model are components for understanding
the user’s input and generating output in response. In tra-
ditional ClIs, all of these components leverage the structure
and contents of a database. For example, the input compo-
nent can use the names of tables and columns in the database
schema in order to understand a user’s query for “French
restaurants near downtown” as referring to cuisine=French,
object=restaurants, and location=downtown.

When building CIs on top of web applications, one cannot
take advantage of that type of information. However, we ar-
gue that the web provides different types of information that
make it possible to build Cls effectively. As we discuss in
this section, recent advances in algorithms for understanding
and manipulating web applications make this possible.

3.1 Task models

Task models are used in conversational interfaces to guide
users through performing their task. In traditional Cls, this
phase includes refining search results, presenting intermedi-
ate options, and helping the user navigate to the information
they are seeking.

More generally, for web-based applications where the set
of tasks is more varied than the classic database search prob-
lem, we need to have a task model in order to guide the user
through performing their task, the same way traditional Cls
guide users through finding information. Yet how are we
going to get task models for arbitrary web applications?

If those task models already existed, building Cls would
be easier. Research on model-based UI design [17] argues
that task models should be the basis for designing and devel-
oping applications. If all designers and developers followed
this approach, we would have the task models we needed.
One promising direction could be to crowdsource the design
of task models for arbitrary web applications, engaging a
crowd via platforms such as Amazon’s Mechanical Turk ® to
provide a low-cost way of acquiring task models.

Yet even without explicit task models, the design of a
web application imparts a lot of information which can be
leveraged to infer task models. Because web applications

*http://en.wikipedia.org/wiki/Voice XML
®http://mturk.com

are designed for humans to understand and use, their user
interfaces codify designers’ beliefs about what can be done
using the application — their task models. By examining the
user interfaces, it should be possible to reverse engineer the
task models of applications.

The structure of web applications often gives a clue to
their semantics. Well-designed web applications use con-
sistent visual cues to enable users to quickly understand
the site’s contents [20]. For example, link text provides
a description of the link destination, such as “flights” or
“hotels”. Moreover, links with similar functionality tend
to be grouped together, such that links for “books” and
“movies” and “CDs” are displayed physically close to each
other. These design practices encode valuable information
about the categories of objects that can be manipulated us-
ing this application. For example, a conversational interface
should be able to analyze the navigation bar on the Google
front page and determine that this website is organized ac-
cording to Web, Images, Videos, Maps, News, and more.

Similarly, buttons on web pages often indicate actions that
can be done using the application, such as “find a flight” or
“search prices” or “download music”. These buttons provide
verbal cues for the types of tasks possible on the site.

More generally, websites today make use of a set of com-
mon Ul patterns, such as user registration/login, search re-
sults, and shopping carts. For example, the search result
pattern typically involves the user entering a query into a
search textbox, to which the system responds with a list of
summarized search results. The user clicks on one of the
search results, and the system shows a page with more de-
tails about that specific item. Similarly, a shopping cart
pattern has affordances to add/remove/update items in the
cart and invoke the checkout process. While the actual ren-
dering of these patterns changes from site to site, they share
a common interaction flow that can be recognized.

The FindThis system [16] leveraged the search result pat-
tern to provide a limited conversational interface for retriev-
ing item-property information from e-commerce sites. With
more research, we believe it should be possible to infer gen-
eral task models from arbitrary web sites in order to support
dialogue management in Cls.

3.1.1 Usage information

We believe that what people have done in the past is a
good predictor for what they will do in the future. Therefore,
by examining past web interaction history, we ought to be
able to build good task models.

The prevalence of web interaction logging makes it very
easy to capture user interaction with web applications. Plat-
forms such as Coremetrics® and CoScripter Reusable His-
tory [14] capture fine-grained user activity at the level of
interaction with elements on each web page. This user in-
teraction data could be analyzed to identify common paths
through the application. If many users tend to follow the
same navigational path through the application, this “path
well travelled” could form the basis of a task model.

For example, the CoCo system [13] mined personal usage
logs to suggest automated web tasks that could be invoked
through a conversational interface.

In the future, we envision an agent that has full knowl-
edge of what the user has done in the past, and which can
access the web on the user’s behalf. The user should be able

Shttp://coremetrics.com

to converse with this agent in order to ask it to do tasks
on the web, using that user’s interaction logs as the basis
for performing those tasks. When the user makes a request
of the agent, the agent should be able to search through
the user’s past interaction history and identify interaction
sequences that could be reused in order to accomplish the
same task again. Through conversation, the agent can de-
termine which steps to take to accomplish the desired goal,
perhaps customizing them to the user’s current need.

3.1.2 Parameters

Part of the dialogue management process in traditional
CIs is to help users refine their query by providing additional
search parameters or filters. The dialogue management com-
ponent in traditional Cls includes strategies for prompting
the user to provide this information based on current results.

However, in the web domain, tasks are not as structured
as the traditional database search task. Instead of trying to
find information, users may be applying for a scholarship,
registering for a conference, or booking a vacation.

On the web, completing these tasks involves form filling.
The web application designer has decided which parameters
are needed for completion of a task, and has created a form
to collect those inputs from the user.

These forms are natural points to engage in dialogue with
the user to solicit their input. For example, the explicit task
models authored for the CoCo system [13] included parame-
ters which caused the dialogue manager to prompt the user
for the values of those parameters before invoking the task.

More generally, we imagine a system that can automati-
cally map a web form to a conversational dialogue with the
user. For each input field in the form, the system can turn
that into a dialogue prompt depending on the type of the
input field (e.g., “what date would you like to leave?” and
“what airport are you departing from?” and “do you want
one-way or round trip?”).

3.2 Input

Ultimately the problem of understanding a user’s input
reduces to the problem of understanding what they are ask-
ing the computer to do. The challenge of a CI system for
the web is to interpret that input and map it to something
that can be done on the web. Typically, this process involves
selecting a website and deciding what to do on that website.

Operating a user interface is similar to a conversation: the
system presents some information, the user selects an option
from among the choices presented, and the system responds
with both the reaction to the user’s command, along with
new options for what to do next. On the web, this conver-
sation is conducted through web pages and interactions on
web pages: the system generates some HTML content and
the user responds by clicking buttons and links and typing
into textboxes. The system responds by generating a new
web page, and so on.

Accessible technologies for visually impaired users illus-
trate one extreme of mapping from web-based interfaces into
a conversational interface [5]. Screenreaders orally read out
the content on the web page, top to bottom, and the user
can indicate which link to follow or can navigate through
the DOM structure of the page using keyboard commands.
However, since the interaction is at the very low level of
individual elements on the page, the conversation is very
lengthy and laborious.

We believe it ought to be possible to create conversational
interfaces for web applications that function at a higher level
than the individual elements on the page.

One insight is that the input widgets in a web application
(buttons, links, etc.) usually correspond to goals the user
can express in conversation. For example, a user who wants
to check in for a flight on an airline website will likely click
the “Check In” button. The TrailBlazer system [4] made use
of this insight in a system which, given a goal expressed in
natural language, guided blind users through a sequence of
steps to accomplish that goal.

A different approach, taken by CoCo [13], is to allow end
user programmers to define a library of tasks that can be
accomplished via web applications. The user’s query is in-
terpreted relative to the available tasks and the appropriate
task model is selected for the next phase of the conversation.

Yet we can also imagine more ambitious ways to map web
applications to a conversation. Imagine the situation where
you call a friend for help while travelling, and ask your friend
to do something for you. If you know what you need to do,
such as checking the train schedules for a particular route,
your friend can interpret the contents of that website and
perform the task for you, as you provide the information
necsesary to complete that task.

What if we could create an agent that could take the place
of that friend, interpreting the contents of the website and
relaying the relevant information back to you so that you
can guide the agent through the task? The friend/agent
does not need to be an expert in performing the task; they
only need to be able to communicate the contents of websites
efficiently to a human and follow instructions on what to do
next. Therefore, through conversation, it may be possible
to enable people to direct agents to perform arbitrary tasks
on web applications.

3.3 Output

One remaining problem for building CIs for the web is
to map from the information available on web pages into
the conversational modality. To build a CI based on a web
application, the CI must be able to interpret arbitrary in-
formation contained on a web page in order to communicate
it back to the user.

One approach to this problem is to create tools that let
programmers manually specify how to extract content from
web pages for use in the CI, along the lines of Highlight [15]
(while designed for the creation of mobile interfaces, similar
techniques could apply to CIs), Kapow”, or Yahoo! Pipes®.
Perhaps crowdsourcing could be leveraged here as well, sim-
ilarly to how d.mix [10] let the crowd create and share API
wrappers for existing web apps.

Another approach is to build on algorithms that auto-
matically extract semantic structure from web pages, in the
same way that Sifter [11] automatically extracts search re-
sults and repetitive content. On many sites, the content
is output from a database using templates, leading to algo-
rithms that can automatically infer the template and extract
the database values [2]. Once extracted, search results could
be communicated to the user via the CI using existing tech-
niques for presenting structured result sets.

"http://kapowsoftware.com
Shttp://pipes.yahoo.com

4.

CONCLUSION

‘We have proposed a new way to build conversational inter-
faces: by building them on top of existing web applications.
Web applications, which have been designed for people to
use, exhibit a lot of structure that can be automatically

extracted and leveraged to create Cls.

In this paper we

have identified some of the relevant work in task modeling,
web usage mining, information extraction, and end user pro-
gramming which will make it possible to create conversation
interfaces on top of arbitrary web applications.

S.
1]

[10]

[11]

[12]

REFERENCES

J. F. Allen, L. K. Schubert, G. Ferguson, P. Heeman,
C. H. Hwang, T. Kato, M. Light, N. G. Martin, B. W.
Miller, M. Poesio, and D. R. Traum. The TRAINS
Project: A case study in building a conversational
planning agent. Journal of Experimental and
Theoretical AT 7:7-48, 1994.

A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In Proc. 20038 ACM SIGMOD
Intl Conf on Management of Data, SIGMOD ’03,
pages 337-348, New York, NY, USA, 2003. ACM.

T. Berners-lee and J. Hendler. The semantic web.
Scientific American, 284:34-43, 2001.

J. P. Bigham, T. Lau, and J. Nichols. TrailBlazer:
Enabling blind users to blaze trails through the web.
In Proc. 14th Intl Conf on Intelligent User Interfaces,
IUI 09, pages 177-186, New York, NY, USA, 2009.

J. P. Bigham, C. M. Prince, and R. E. Ladner.
WebAnywhere: A screen reader on-the-go. In Proc.
2008 Intl Cross-disciplinary Conference on Web
Accessibility, W4A ’08, pages 73-82, New York, NY,
USA, 2008.

M. K. Evi, M. Dilligenti, M. Gori, and V. Milutinovi.
Recognition of common areas in a web page using
visual information: a possible application in a page
classification. In Proc. of 2002 IEEE Int. Conf. on
Data Mining. IEEE Computer Society, 2002.

J. R. Glass, E. Weinstein, D. S. Cyphers, J. Polifroni,
G. Chung, and M. Nakano. A framework for
developing conversational user interfaces. In CADUI,
pages 347-358, 2004.

A. L. Gorin, G. Riccardi, and J. H. Wright. How may
I help you? Speech Commun., 23:113-127, Oct 1997.
B. J. Grosz. Transportable natural-language interfaces:
problems and techniques. In Proc. 20th Annual
Meeting on Association for Computational Linguistics,
ACL ’82, pages 4650, Stroudsburg, PA, USA, 1982.
B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer.
Programming by a sample: rapidly creating web
applications with d.mix. In UIST’07, pages 241-250,
2007.

D. F. Huynh, R. C. Miller, and D. R. Karger.
Enabling web browsers to augment web sites’ filtering
and sorting functionalities. In Proc 19th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’06, pages 125-134, New York, NY,
USA, 2006. ACM.

A. Kumar, N. Rajput, D. Chakraborty, S. K. Agarwal,
and A. A. Nanavati. WWTW: the world wide telecom
web. In Proc. 2007 Workshop on Networked Systems

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

for Developing Regions, NSDR 07, pages 7:1-7:6, New
York, NY, USA, 2007. ACM.

T. Lau, J. Cerruti, G. Manzato, M. Bengualid, J. P.
Bigham, and J. Nichols. A conversational interface to
web automation. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology, UIST 10, pages 229-238, New York, NY,
USA, 2010. ACM.

I. Li, J. Nichols, T. Lau, C. Drews, and A. Cypher.
Here’s What I Did: Sharing and Reusing Web
Activity with ActionShot. In Proc. 28th Intl Conf on
Human Factors in Computing Systems, CHI ’10, pages
723-732, New York, NY, USA, 2010. ACM.

J. Nichols, Z. Hua, and J. Barton. Highlight: a system
for creating and deploying mobile web applications. In
Proc 21st Annual ACM Symposium on User Interface
Software and Technology, UIST ’08, pages 249-258,
New York, NY, USA, 2008. ACM.

I. Okoye, J. Mahmud, T. Lau, and J. Cerruti. Find
This for Me: Mobile Information Retrieval on the
Open Web. In Proc 16th Intl Conf on Intelligent User
Interfaces, IUI ’11, pages 3—12, New York, NY, USA,
2011. ACM.

F. Paterno. Model-Based Design and Evaluation of
Interactive Applications. 2000.

J. Polifroni, G. Chung, and S. Seneff. Towards
automatic generation of mixed-initiative dialog
systems from web content. In Proc. of Furospeech,
2003.

A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a
theory of natural language interfaces to databases. In
Proc. 8th Intl Conf on Intelligent User Interfaces, IUL
'03, pages 149-157, New York, NY, USA, 2003.

L. Rosenfeld and P. Morville. Information Architecture
for the World Wide Web. O’Reilly, 2002.

V. Zue and J. Glass. Conversational interfaces:
advances and challenges. Proceedings of the IEEE,
88(8):1166 —1180, Aug 2000.

