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1 Introduction

As computer applications become increasingly complex, the human-computer interfaces for such applications
grow complex as well. There is a strong need for intelligent user interfaces (IUT) that not only assist novice
users in navigating complex applications, but allow expert users to accomplish their tasks more efficiently.
In particular, we are interested a subproblem of TUT known as programming by demonstration (PBD) [2].
In PBD, a user constructs a program not by writing code in a programming language, but by demonstrating
the effects of the program in the user interface. Using PBD, a user is able to communicate with an application
using the user interface she is accustomed to using, and describe her task in terms of user interface actions.

We define two challenges that must be solved to implement a PBD system:

1. Action prediction: given that a user has performed a sequence of actions already, what action is she

likely to perform next?

2. Task generalization: given that a user has performed some sequence of actions, what task is she
likely to be performing? Can we generalize from the action sequence to an abstract representation of

her task?

A complete PBD system solves these two problems in conjunction. Notably, it is able to take the sequence
of actions performed by a user, generalize from that sequence to a model of the user’s task, and use this

model to predict her subsequent actions.



Both of these problems can be viewed as sequence learning problems. Work in the field of sequence learn-
ing aims to use inductive techniques on training data that is explicitly ordered. Many interesting domains
show this property, besides the domain of user interface actions: speech signals, alarms in telecommunications
networks, customer transactions, and DNA sequences. In many cases, the ordering is temporal. In these
cases, the time at which an example occurs is significant, as is the temporal relationship between different
examples.

This paper presents a survey of four approaches to the problem of sequence learning and compares them
on their applicability to the two challenges of action prediction and task generalization. Section 2 describes
and compares two data mining approaches to sequence learning. Section 3 presents two Markov process
approaches to sequence learning. In section 4 we propose a taxonomy of the problem spaces addressed by
each of the four approaches, and speculate on hybrid algorithms that combine the best of each. Section 5

puts this work in context by examining related work. Finally, section 6 concludes.

2 Data mining approaches to sequence learning

One popular approach to sequence learning comes from the data mining community and is targeted at
extracting frequently-occurring patterns in large databases of sequence data. This section presents two such
algorithms (WINEPI by Mannila et al [10], and AprioriAll by Srikant and Agrawal [1, 14]).

At a high level, sequence learning algorithms first learn a model of their input, and then use this model
to predict future elements in the sequence. In both of the data mining algorithms considered in this section,
the model of the input sequence consists of a set of frequently-occurring patterns (possibly-discontiguous
subsequences of the input). These patterns together form a representation of common sequences, and are
used as the basis for the prediction step, as described below.

The two algorithms described in this section share a common framework and can be viewed as parame-
terizations of this single framework. This section first presents the framework, then describes the algorithms

WINEPT and AprioriAll in terms of this framework.



2.1 A unifying framework for data mining patterns

The two data mining algorithms discussed in this section take as input a sequence of events, and output a set
of frequent patterns mined from that sequence. We introduce some common terminology before describing
the algorithms.

A sequence is a list of events. Each event occurs at a specific time (represented as an integer) and is of
a certain type. A pattern is a tuple (V, <, g) where V is a set of nodes, < is a partial order over the nodes,
and g is a mapping that associates each node with an event type. Serial patterns impose a total ordering on
all nodes in the pattern, while parallel patterns impose no ordering on the nodes.

A pattern occurs in a sequence if there exists a mapping between nodes in the pattern and events in the
sequence such that each node is mapped to a distinct event, and the ordering over the nodes is preserved.
A pattern is said to be frequent over a sequence if it occurs more than the minimum frequency min_fr
in the sequence. This constant is defined differently for WINEPI and AprioriAll, as will be discussed in
the descriptions of the algorithms below. First, however, we describe the commonalities between the two
algorithms.

Figure 1 shows a pseudocode shell for the WINEPI and AprioriAll algorithms. Each algorithm in-
stantiates the framework by implementing the four functions Transform Input, Initialize Candidates,

Find Frequent, and Make Candidates.

# Initialization

1: Transform_ Input()
# Iteration variable

2: pat.len =1

3: candidate set[pat_len] = Initialize Candidates()
# Iteration

4: while candidate_set[pat_len] is not empty:

5: frequent_set[pat_len] = Find Frequent(candidate set[pat_len])
# Generate candidate set of patterns of length pat_len+l
6: candidate set[pat_len+1] = Make Candidates(frequent set[pat_len])
# Next iteration
T: pat_len = pat_len + 1
# Output

8: output frequent_set[pat_len] for all pat_len

Figure 1: Pseudocode for the data mining sequence learning algorithms. Functions typeset in italic are
implemented differently in WINEPI and AprioriAll



The algorithm begins with Transform Input, an optional initialization step. AprioriAll transforms its
input database into a more tractable representation, while WINEPI performs no initialization.

The algorithms then call the Initialize Candidates function to construct the starting set of candidate
patterns of unit length. This candidate set forms the basis of an inductive loop that terminates when the
set of candidates becomes empty. On pass ¢ through the loop, the algorithm computes the frequent set of
length ¢ candidates by making a pass over the database.

The Make Candidates function takes a frequent set of patterns of length ¢ and joins it against itself to
form a candidate set of items of length 7 + 1 as follows. For each pair of patterns a and b such that a and b
have ¢ — 1 event types in common, create a new pattern ¢ that contains the i — 1 common event types, plus
the two event types in @ and b that are not part of the common pattern. For example, two sequences ABCD
and ABCE are joined to form ABCDE.

Some patterns in the candidate set may be pruned at this point. If a sequence is frequent, all of its
subsequences must also be frequent (since the subsequence can be found in the input sequence at least as
many times as the sequence itself). Therefore if a sequence contains a subsequence that is not frequent, the
sequence cannot possibly itself be frequent. Subsequences may be discontiguous. If a proposed candidate
sequence of length ¢ + 1 contains a subsequence of length ¢ that is not frequent (i.e., it does not appear in
the frequent set for length 7) then that sequence cannot possibly be frequent, and it is pruned from the set of
candidate sequences of length ¢+ 1. In our example, the pattern ABCDE will be pruned if any of the patterns
BCDE, ACDE, ABDE, ABCE, or ABCD are not frequent.

When the candidate set becomes empty, the iteration terminates and the algorithm returns a list of all
the frequent sets found over the course of the iteration. Otherwise, the algorithm continues with the next
iteration, using the newly created candidate set.

This algorithm framework finds the set of all frequent patterns in the input sequence. In order to use
these patterns for sequence prediction, one creates a set of association rules—rules of the form o = 3 such
that if the pattern « occurs in the input sequence, g is likely to also occur with confidence ¢. Assume S is a
frequent pattern. Pick a subsequence a of 3 that is also frequent. The ratio ¢ = frequency(3)/ frequency(a)

is the confidence of the association rule.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: An example WINEPIT input sequence. Events in the sequence are shown above the line, and the
time of each event is shown below the line. The box shows the window (2, 7) of size 5 that contains events

B, A, E, and C.
2.2 WINEPI: finding frequent episodes

WINEPI [10] is an algorithm for finding frequent episodes (patterns) in a telecommunications alarm event
log. The input to WINEPI is a sequence of N events starting at time t; and ending at time ¢., such that all
N events occur within this time period (¢s < time(e;) < te, 1 < i < N); no two events can occur at the same
time, nor does an event occur at every time point. Figure 2 shows a sequence starting at time 1 and ending
at time 15. WINEPI finds frequent patterns that occur inside fixed-size windows over the input sequence.
A window of size winsize is a range of times (t,,ts + winsize) over the input sequence. For example, the
window (2, 7) is a window of size 5 that includes events B, A, E, and C (but not the E that occurs at time
7).

A pattern occurs in a window if there is a one-to-one mapping from nodes in the pattern to events in the
window, and the pattern’s ordering constraints are met. A pattern is deemed frequent if it occurs in more
than a fixed percentage min_fr of the total number of windows in the input sequence.

WINEPI only handles two types of patterns: parallel (no ordering between events in the pattern) and
serial (all events in the pattern totally ordered). An example parallel pattern in WINEPI is ((z,y),0, (z —
A,y — C)). = and y are the nodes in the pattern, the set of ordering constraints over the nodes is empty,
node x maps to an event of type A, and node y maps to an event of type C. Considering windows of size 3
in Figure 2, this pattern occurs in windows (4, 7), (9, 12), and (10, 13). For brevity, we refer to this pattern
as AC. Enhancements to the algorithm to handle patterns that are not strictly parallel or serial are sketched
out in [10].

WINEPI follows the general algorithm framework presented in section 2.1. It performs no initial transfor-



mation, so the Transform Input function does nothing. The Initialize Candidates function constructs
the first candidate set by returning all candidate patterns of length one (i.e., those patterns containing only
a single event).

WINEPI then iterates until the set of candidates is empty. On the i** iteration, the algorithm calls
Find Frequent to determine which of the set of candidates of length 4 are actually frequent. Find Frequent
makes a pass over the input sequence and counts the number of fixed-size windows in which the candidate
pattern appears.

Once the frequent set is found, it is joined against itself to construct a candidate set of size i + 1 using
the Make_Candidates function. Any of these generated candidates may be immediately pruned if it contains
a subsequence of length ¢ that is not frequent (i.e., the subsequence is not a member of frequent-set[il).

When the candidate set is empty, the algorithm terminates and returns all frequent sets discovered
thus far. These frequent patterns are turned into association rules for sequence prediction as discussed in
section 2.1.

An alternative algorithm (MINEPI) is discussed in [10]. Instead of counting occurrences of patterns
in windows, MINEPI finds all minimal occurrences of patterns. A minimal occurrence of a pattern p is a
window w such that p occurs in w, and p does not occur in any subwindow of w. MINEPI is more useful for
finding association rules such that the patterns on the left and right sides of the association rule can occur

within different-sized windows.

2.3 AprioriAll: mining association rules

The input to AprioriAll is a database of customer-sequences. Each customer-sequence represents the items
purchased (over time) by a single customer, as a list of transactions ordered by the time of the transaction.
A customer may purchase more than one item in a single transaction. For example, a bookstore might be
interested in the customer-sequence: (Foundation, Ringworld) at time 1, (Second Foundation) at time 5, and
(Ringworld Engineers) at time 10. In this sequence, the customer purchased both Foundation and Ringworld
in a single transaction at time 1, purchased Second Foundation by itself at time 5, and later purchased

Ringworld Engineers.



In AprioriAll terms, a pattern consists of an ordered list of sets of items (itemsets): (s182...s,). Each
itemset s; is a set of items taken from the domain I of possible items. A sequence {(aias ...ay) is a subsequence
of another sequence {(b1by...by) if there exist integers iy < ia < --- < 4y such that a1 C b;,, as C b;,,

..,an C b;,. A pattern is said to be supported by a customer-sequence if it is a subsequence of the
customer-sequence. Frequent patterns are patterns that are supported by more than a constant percentage
min_fr of customer-sequences. The length of a pattern is the number of itemsets it contains.

For example, a customer-sequence {(10, 40, 80), (20, 30), (50)) has length 3. It contains the subsequence
((10,40), (50)).

Before finding the frequent patterns, AprioriAll transforms its input to make it more amenable to finding
frequent patterns as follows (the Transform Input function). First it finds the set of all frequent patterns
of length one. This is equivalent to finding those itemsets that are supported by a sufficient number of
customer-sequences. Then it maps each such itemset to an integer, and transforms each customer-sequence
into sequences of sets of these integers by converting each transaction into the set of itemsets contained
in it. Itemsets that are not frequent are simply dropped from the customer-sequence. This transformation
minimizes the time needed to test whether an itemset is contained within a sequence, since it becomes simply
a test of set membership rather than a subset test.

This transformation step converts itemsets into integers. After this transformation, patterns are simply
sequences of integers. In our example, suppose the frequent itemsets are (10,40), (80), (30), and (50). We
map these to the integers 1 through 4. The customer sequence becomes ((1,2), (3), (4)) and the subsequence
is (1,4).

The Initialize Candidates function returns the set of all frequent itemsets previously computed in
the Transform Input step, which corresponds to all frequent sequences of length one.

AprioriAll then uses the standard inductive algorithm to find the set of all frequent patterns. In the
it" iteration, the Find Frequent function steps through all customer-sequences in the database, and iden-
tifies which candidate patterns have enough support to be frequent. These frequent patterns form the set
frequent-set[i].

The Make Candidates function performs a join over the frequent patterns of length ¢ to find the set of



candidates of length 4 + 1. Two patterns can be joined if they have a common subsequence of length ¢ — 1;
the joined pattern contains this subsequence and the two itemsets that were not common to the original
patterns. To form candidates of length 2, all pairs of candidates are joined. As in WINEPI, a candidate
pattern of length ¢ + 1 may be pruned if it contains a subsequence that is not frequent.

The algorithm then proceeds to the next iteration, and terminates when the candidate set becomes empty.
On termination, AprioriAll returns the set of all frequent patterns found over the course of the algorithm’s
run.

The AprioriAll algorithm discards the transaction time information on each transaction. As a conse-
quence, AprioriAll has two time-related limitations. First, all items in an itemset must be bought in the
same transaction, even though the next transaction may occur only a short time later. Second, long delays
between transactions are ignored; a customer who first bought Foundation and then bought Second Foun-
dation a year later would provide just as much support for a pattern as one who bought them within two
months of each other.

These limitations are addressed by the GSP algorithm [14], an extension to AprioriAll. In AprioriAll,
all of the items in an itemset must be bought in the same transaction. In contrast, GSP removes the single-
transaction restriction by treating each itemset as a parallel pattern and allowing items in the itemset to
be bought in different transactions as long as the transactions occur within a constant window-size of time.
These parallel patterns are combined sequentially to make a serial pattern of parallel patterns.

To address the transaction-delay problem, GSP adds two parameters to the algorithm: min-gap and
max-gap. The min-gap constraint restricts the minimum time between the last event in one parallel pattern
and the first event in the next parallel pattern. The max-gap constraint restricts the maximum time between
the first event in a parallel pattern and the last event in the next parallel pattern. Together, these constraints
assure that two sequential parallel patterns neither occur too closely spaced in time nor too far apart.

An orthogonal enhancement in GSP allows the user of the algorithm to define a hierarchy of item types

and perform pattern matching based on this hierarchy rather than a simple equality test.



2.4 Discussion of WINEPI and AprioriAll

The major difference between the two algorithms is that whereas WINEPI is given a single input sequence,
AprioriAll’s input is segmented by the customer making the transaction. Thus, while the support for a
pattern in WINEPI is the number of windows over the single input sequence that contain that pattern, the
support in AprioriAll is the number of customer-sequences containing the pattern.

A second difference is the types of patterns each algorithm can find. The basic WINEPI algorithm can
find either parallel or serial patterns, but not both simultaneously (although an extension is discussed to
generalize WINEPIT to handling patterns that are not strictly serial or parallel). In contrast, AprioriAll finds
only serial patterns.

WINEPI finds only patterns that occur within a fixed-size window over the input sequence. As a con-
sequence, WINEPT is useful for finding patterns with temporal locality—patterns whose constituent events
occur near each other in time. From the standpoint of using WINEPI for mining common sequences of user
actions, this assumption is sensible, since we believe that related user actions will exhibit temporal locality.
In contrast, AprioriAll finds patterns that occur within a single customer-sequence. This algorithm could
be useful for intelligent user interfaces if the sequence of user actions has already been segmented in some
fashion (for example, by user, or perhaps by the user’s task).

From the standpoint of the challenges proposed in our introduction, both of these algorithms would be
suitable for action prediction and task generalization. The models they learn of the input sequence are sets
of frequent association rules; these association rules represent commonly occuring straight-line programs
executed by the user, and are useful in predicting the user’s next actions. Since they only cover frequently-
occurring sequences of actions, they are tolerant of noisy data (extraneous actions not directly related to the
task at hand). Both WINEPI and AprioriAll are able to model interleaved tasks—processes with temporal
overlap that generate interleaved events.

The main drawback of the data mining algorithms from the standpoint of TUI is that they require a large
corpus of data, which makes them more useful as offline algorithms. For example, they could collect a log
of the user’s actions during the course of a day, learn on it overnight, and then use the association rules the

next day for prediction.



3 Markov process approach

In this section, we present two approaches to sequence learning and prediction: hidden Markov models
(HMMs) and TDAG. Both construct a model of the input sequence that may be used to predict the next
event in a sequence based on the events immediately preceding it. We first describe each of the algorithms

in turn, then compare them on their applicability to intelligent user interfaces.

3.1 Hidden Markov models

Hidden Markov models (HMMs) are a general-purpose method for sequence learning.

A Markov model consists of a set of states and probabilities of transitions between the states. More
formally, a Markov model is a tuple (5, K, A, B, ) where S is the set of states, K is the output alphabet, A
is the state transition matrix (a;; is the probability of transitioning from state i to state j), B is the output
token probability matrix (b;;; is the probability of outputting token o, during the transition from state i to
state ), and 7 is the initial probability distribution (7; is the probability of starting in state ).

In a visible Markov model, the state of the model is known at all times. In a hidden Markov model, the
state is unknown and must be guessed from the observed output sequence. Markov processes are characterized

by two assumptions:

1. Limited horizon: the next state depends only on the last N states
2. Time invariant: the probability distributions don’t change over time

Any process satisfying these assumptions can be modelled using Markov methods. A model for which
the next token depends only on the last token is also known as a first-order Markov model. An N** order
Markov model allows the next token to depend on the N past tokens. Note that any model with a finite size
token horizon can be recoded as a first-ordel model by considering each possible combination of past tokens
as a single state in the first-order model.

The advantage to modelling a process using Markov techniques is that there exist efficient solutions to
learning the model from observed sequences of data. The three fundamental problems of hidden Markov

models are the following:

10



1. Given an observation sequence O and a model p, how does one efficiently compute P(O|u), the prob-

ability of the observation sequence given the model?

2. Given an observation sequence O and a model p, how does one choose an “optimal” state sequence

X = X1...Xy, i.e, one that best explains the observations?

3. Given an observation sequence O and a space of possible models 1 = (A, B, 7), how does one adjust
the parameters to the model so as to maximize P(O|u), the probability of the observation sequence

given the model?

HMMs are used to perform sequence prediction as follows. First, a number of models are learned from
different training sequences using the solution to Problem 3; one model is learned for each training sequence.
To predict the next token of a target sequence, the solutions to Problems 1 and 2 are used. First the solution
to Problem 1 is applied to find the most likely model given the target sequence. Then the solution to Problem
2 is applied to find the most likely state sequence using that model. Finally, a prediction is made based on
the state the model is in after seeing the target sequence.

We first describe the solutions to these three problems, then discuss applying HMMs to IUI in more

detail.

3.1.1 Problem 1: Finding P(O|u)

The first problem is solved with the Forward-Backward Procedure, a dynamic-programming algorithm for
calculating the probablity of observing a sequence given a model.

Forward procedure: Define the forward variable o;(t) = P(0103...0t—1,X: = i|u) as the probability
of ending up in state s; at time ¢, given that the observation sequence O = 0y ...0s_1 has been seen. The

forward variables are computed inductively as follows:

1. Initialization

2. Induction

11



3. Total

PO|p) = Zai(T +1)

The Forward Procedure suffices to solve Problem 1 (finding P(O|p)). However, we also present the
Backwards Procedure here because it is useful in solving the third problem.

Backwards procedure: Define the backwards variable §;(t) = P(o¢...or|X; = i,u) as the total
probability of seeing the rest of the output sequence given that we were in state s; at time ¢. It is computed

inductively as follows:

1. Initialization

2. Induction

N
Bi(t) =Y aybyBi(t+1)  1<t<T,1<i<N

j=1
3. Total

PO|p) = Zﬁzﬂz’(l)

Both the Forwards and Backwards procedures can be used to solve Problem 1.

3.1.2 Problem 2: Finding the optimal state sequence

The Viterbi algorithm finds the most likely sequence of states given an observed sequence. Define §;(t), the

probability of the most probable path to state j at time ¢, as follows:
6j(t)= max P(Xl...Xt_l,Ol...Ot_l,Xt=j|/,b)

X1..X¢—1

It is computed as follows, where argmax is a function that returns the variable for which its argument is

maximized:

1. Initialization

12



2. Induction

(5j (t + ].) = maév 6i(t)a,-jb,~jt

1<i<

Store backtrace:

Yi(t+1) = arg (B 8i(t)aijbijp  1<j<N

3. Termination. The backtrace 9; is used to read out the most likely state sequence, working backwards

in time.
X141 = arglrsnias)%&(T-{-l)
X, = Vg, (t+1)
P(X) = lrsnizgvéi(T+1)

3.1.3 Problem 3: Finding the best model

This is the most difficult of the problems, and has no optimal solution. However, approximation procedures
exist; the Baum-Welch method (also known as the Forward-Backward algorithm) is an iterative hill-climbing
algorithm for iteratively updating model parameters so as to maximize P(O|u) for a giving training sequence.

Baum-Welch algorithm: Define p;(i,5),1 < ¢t < T,1 < i,5 < N, as the probability of traversing an

arc in the Markov model at time ¢ given observation sequence O (see [13, 11] for derivations):

o ag(t)agibiBi(t + 1)
pt(lvj)_ Eﬁzlam(t)ﬂm(t)

In addition, define ~;(¢) = Z;Vﬂ (i, 7).

Then, given an existing model u = (A, B, 7) we can estimate a new model /i using the following definitions:

Fio= (1)
T ..
A thlpt(@,_])
aij = 7
2 Zt:ot:k,lgtST (i, J)
bijt =

Zthl Dt (7’: .7)
Baum proved that P(O|i) > P(O|p) and thus that the model ji better fits the observed sequence on

each iteration, until it reaches a local maximum.
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3.1.4 Applying Markov models to TUI

The main application of Markov models as described in Rabiner [13] is speech recognition. In this application,
a different Markov model is learned for each word in the vocabulary. Given a speech sequence of an unknown
word, and a set of learned Markov models for each of the words in the vocabulary, the task is then to guess
the word by finding the most likely Markov model given this observed sequence. This is exactly the solution
to Problem 1 described in the previous section.

Neither Rabiner nor Manning [11] directly address how to apply Markov models to the two PBD problems
with which we are concerned. However, the task of action prediction is an application of the solutions to
Problems 1 and 2 as described in the previous section. First one finds the Markov model most likely given
the observed input sequence, then one finds the optimal state sequence through that model given the input
sequence. Given that the state sequence ends in a state s; at time ¢ — 1, the probability distribution for the
next token is then:

N
P(og] Xi-1,1) = Y aijhije
j=1

The second problem in IUI is that of task generalization: generalizing from a sequence to an abstract
model of the sequence such that the sequence can be recreated from the model. We note that a Markov
model is indeed such a model. It captures the statistical regularities in an input sequence and represents the
sequence as a probabilistic finite state machine. However, the drawback of using Markov models to represent
user tasks is that the models are nondeterministic. Thus a given Markov model represents a (possibly
infinite) set of programs (i.e., sequences of tokens), not all of which may be meaningful.

An alternate method of applying Markov models to task generalization is to parallel the work in speech
recognition and learn a distinct Markov model for each task. An unknown input sequence is then tested
against these models using the solution to Problem 1, and the most likely model is selected as the most
probable task. The drawback to this method is the need for a large library of tasks and action sequences
representing these tasks. This solution bears a strong resemblance to the problem of plan recognition,
discussed below in section 5.

The above discussion of Markov models assumes a fixed structure (i.e., number of states and connected-

ness of those states). In some domains, the number of states corresponds naturally to a unit in the domain.

14



For example, in parts of speech tagging, it is natural to have one state in the model for each part of speech.
An open problem in the application of Markov models to IUI is to discover a natural mapping between model

states and objects in the domain of user actions and tasks.

3.2 TDAG: Discrete sequence prediction

The TDAG algorithm builds a Markov tree representation of the input sequence. Each node in this tree
corresponds to one token in the input sequence; the children of a node represent tokens immediately following
that node’s token in the input sequence. Pseudocode for the TDAG algorithm is shown in Figure 3. Figure 4

shows the tree resulting from adding the string ab to an empty tree.

# State is initialized to contain only the root node
1: state = list of [RootNode]

# Input a new token x

2: function input(x):

3: let new_state = list of [RootNode]

4: for each node v in state:

5: let u = make_child(v, x)

6: enqueue u onto new_state

7: state = new_state

8: function make_child(v, x):

9: if children(v) has no node u with token x:
10 let u = new_node(x) and add u to children(v)
11: u.in_count = 0

12: u.out_count = 0

13: u.in_count++

14: v.out_count++

15: function project_from(v):

16: let projection = empty list

17: for each child u in children(v):

18: add [u.token, (u.in_count/v.out_count)] to projection
19: return projection

Figure 3: Pseudocode for the TDAG algorithm for discrete sequence prediction.

TDAG maintains a state list: a list of nodes that can be extended at a given point in time. The state
list starts out containing only the root node, representing an empty tree. When TDAG receives a new input
token t, it updates the tree structure as follows. Initialize the new-state variable to contain only the root.

For each node u on the state list, find the child of u corresponding to token ¢ (call this node v; it is created

15



[11] [1/0]

Root

[0/2] b

[1/0]
Figure 4: TDAG tree showing the result of adding the string ab to an empty tree. Numbers in brackets
near a node show the in-count and out-count, respectively, of that node. The state list after the string

has been added is [Root, ab, b].

if it doesn’t exist). The out-count of u and the in-count of v are incremented, representing the fact that this
token appears on the transition from u to v. v is added to the new-state list. After all nodes on the state list
are processed, the new-state list becomes the state list and the algorithm is ready for the next input token.

Each node in the tree can be viewed as representing sequence of tokens (namely, the path from the root
to this node), or more generally, a context with which to predict the next token. The state list represents
all possible suffixes of the input sequence seen thus far; alternatively, it can be viewed as a list of contexts
with which to predict the next token.

A node’s out-count corresponds to the number of times this node has been removed from the state list
and replaced with its child. The in-count of a node corresponds to the number of times the path to that node
has appeared in the input sequence. For a child v of u, the ratio in-count(v)/out-count(u) is the proportion
of transitions to v out of all transitions from u to its children, or equivalently, an estimate of the probability
of transitioning from wu to its child v.

Thus, to predict the next token from a given node u (Laird and Saul call this projection), TDAG returns
the ratio in-count(v)/out-count(u) for all children v of w. This forms a probability distribution for the next
token. The confidence in this projection increases exponentially with the out-count(u). While a projection
may be made from any of the nodes on the state list, TDAG uses a heuristic function to determine from which
node to project. It selects the last node on the state list with a sufficiently high out-count. Thus TDAG
is selecting the node with the longest context (longest path from root to node) that still has a sufficiently

high statistical confidence. An alternate implementation might use different criteria to select the node from
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which to project.

The basic TDAG algorithm described here scales poorly with the size of the input sequence. In particular,
the size of the state list grows linearly with the number of input tokens, and the total number of nodes may
be a quadratic function of the number of input tokens. Laird and Saul describe three optimizations to the

basic algorithm to make it more practical for large inputs:

1. Bounding the node probability. Some nodes in the graph are unlikely to be visited a large number of
times, if they represent uncommon strings of tokens. The enhanced TDAG algorithm refuses to extend

(add children to) a node whose probability is less than a given threshold.

2. Bounding the height of the graph. Define the height of a node as its distance from the root node. By
refusing to extend nodes of height H (for some constant H), this enhancement essentially bounds the

size of the context with which a prediction can be made.

3. Bounding the prediction size. In the general case, there may be an infinite number of possible input
tokens. By limiting the size of the projection to at most K tokens, one ensures that the time to
compute a projection is bounded. The algorithm drops any token with less than 1/K probability, thus

ensuring that at most K tokens appear in the projection.

With these enhancements, the TDAG algorithm is practical for large input sequences and may be applied

to the challenges in IUI, as discussed below.

3.2.1 Applying TDAG to IUI

TDAG is eminently suitable for addressing the problem of action prediction. The user’s actions can be
transformed into a sequence of tokens and fed to the TDAG algorithm, which will learn a Markov tree for
the sequence. The projection made by TDAG is a probability distribution of possible next actions.
TDAG’s Markov tree model may also be viewed as a model of the user’s task. In particular, it represents
common contiguous subsequences in the user’s input. Paths through the tree that include nodes with high

out-count and in-count represent common sequences of actions.
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3.3 Comparison of Markov process algorithms

Both HMMs and TDAG are subject to the two Markov properties. They obey the assumption that the model
does not change over time, and thus that regularities observed in the past are a good predictor of future
behavior. As for the other Markov property (limited horizon), the Markov trees used in TDAG differ from
the first-order Markov models described in section 3.1 in that Markov trees allow the context for prediction
to vary, rather than assuming a fixed-size horizon. The state list in the TDAG algorithm is a collection of
possible contexts, ranging over all the suffixes of the input sequence.

Unlike the hidden Markov models described in section 3.1, there are no algorithms to compute or com-
pare the probability of different TDAG Markov trees given a single input sequence, thus limiting TDAG’s
usefulness in an architecture where multiple models are learned and chosen from at runtime, such as that
proposed in section 3.1.4.

However, TDAG was designed to be usable for online applications where the algorithm receives an input
token and must update its model and make a prediction in real time. For this class of application, TDAG
is suitable and runs efficiently (in many cases, linear in the bounded height of the tree).

In contrast, HMMs are more expressive yet require extensive computation (reestimation of model pa-
rameters) on each new training example. As Laird and Saul note, the general HMM approach can be
computationally intractable and thus is not suitable for online applications in which the model must con-
tinually be relearned for new tokens in the input sequence. In contrast, the TDAG algorithm was designed
specifically for use in an online learning environment, which is a plus for responsive user interfaces.

The benefit of the Markov process approaches is that they are able to predict the next token with some
probability distribution. They make the assumption that the next token is based on the tokens immediately
preceding this token. The drawback to this assumption is that the algorithms deal poorly with noisy input
sequences in which extraneous tokens can interrupt common sequences.

A final drawback of both general Markov models and TDAG is that they have no explicit notion of time,
merely token ordering. Thus the algorithms cannot distinguish two tokens happening right after each other
from two identical tokens separated by a long pause. In the IUI domain, this type of distinction might be

useful, for example in performing task segmentation to decide when one task ends and another begins.
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4 Discussion and Implications for IUI

We have classified the four learning algorithms investigated in this paper into two approaches: the data
mining approach and the Markov approach. The first part of this section compares their very different
assumptions made about the problem domain. The second part of this section suggests hybrid algorithms

that may be more applicable to programming by demonstration.

4.1 Taxonomy of sequence learning problem domain

Figure 4.1 summarizes a number of key differences between the assumptions made by each algorithm. The
main difference in the two approaches is the type of input each assumes. The data mining approaches assume
that the input is a large database of events, each of which occurs at a particular time. The problem is to
find subsequences in the database that occur more frequently than the others. Given a prefix, these common

sequences can then be used to predict the next token in the sequence if the prefix matches one of the common

prefixes.
Data mining Markov

Feature WINEPI AprioriAll | HMMs TDAG
Model of input Patterns Patterns Markov model | Markov tree
Robust for noisy data? Yes Yes No No
Explicit time variable? Yes Yes No No
Model single or multiple processes? | Multiple Multiple Single Single
Online or offline? Offline Offline Offline Online
Structured or atomic events? Structured | Atomic Atomic Atomic
Domain knowledge useful? Yes Yes Yes No

Figure 5: Comparison of sequence learning algorithms.

The fundamental difference between the algorithms surveyed in this paper is the model each algorithm
constructs of the input sequence. The two data mining algorithms model only common patterns in their

input. This makes these algorithms tolerant of noise, since extraneous events in their input do not affect the
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patterns that are learned. They do not attempt to learn to predict every single event in the input sequence,
but instead only mine interesting nuggets of information. In contrast, the two Markov algorithms assume
all tokens in their input are important, and that the next token is a probabilistic function of the tokens
immediately prior to it. The models they learn capture the probability that a token will be emitted, given
the sequence of tokens seen thus far.

This difference (between pattern-oriented and model-oriented approaches) results in a second difference:
the pattern-oriented algorithms both have an explicit time variable, whereas the model-based approaches
are only able to handle ordered sequences with no explicit time representation. Because of this explicit time
variable, the pattern-oriented algorithms are more robust in the face of noisy data—sequences in which the
patterns of interest are not all contiguous. This is especially important for IUI because users might generally
intersperse non-task-related actions with task-related actions. An algorithm that is able to handle noisy
data will be able to ignore the irrelevant actions.

In addition, the pattern-oriented algorithms do not require the input to be segmented by task. Thus they
are able to model sequences that represent the output of multiple simultaneous processes. Both AprioriAll
and WINEPI will learn useful patterns from a long input sequence that includes actions from several different
tasks. In contrast, since TDAG and HMMs learn a model that exactly describes the input, they will do
better if the input sequence is segmented by task so that they can learn different models for different tasks.

Most of the algorithms surveyed here are primarily offline algorithms. They require extensive computation
to build or update their model; they have no method of incrementally updating the model when a new input
token arrives. In an intelligent user interface, offline algorithms would not be fast enough to revise their
model of the user in real time. In contrast, TDAG was designed from the start to be an online algorithm;
TDAG updates its model quickly and incrementally. HMMs also have an incremental update algorithm, but
they require more computation and are computationally intractable in an online situation.

A natural way of representing user actions in IUI is to use structured events. For example, Lau and
Weld [7] describe an ontology in which actions are composed of commands and objects; objects may be
represented with hierarchical structure attributes. For example, an action may be to select an email message;

the message has attributes such as a date, a sender, and a subject. None of the four algorithms surveyed in
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this paper deal directly with structured events, but Mannila and Toivonen [9] present an extension to the
MINEPT algorithm for learning patterns over structured events.

Knowledge of the domain can be used to bias the search towards more interesting or more likely patterns.
Domain knowledge is useful in three of the four algorithms. HMMs could benefit from domain knowledge in
creating model structure (choosing the number of states and the connectivity between those states). Ideally
the model structure would correspond to structure in the user interface domain, but the problem of mapping
a user interface domain to a Markov model structure has yet to be addressed.

In addition, domain knowledge can be used to represent relationships between user actions that have
similar functions, and learn patterns based on these generalized actions. Srikant and Agrawal [14] describe
the GSP algorithm (an extension to AprioriAll) that matches patterns using a taxonomy of event types,
rather than simple equality, to determine whether two events match in a pattern. Mannila and Toivonen [9)
describe an extension to MINEPIT that supports events with multiple attributes; this work could be extended

to use a taxonomy in a fashion similar to GSP.

4.2 Hybrid sequence-learning algorithms for PBD

The taxonomy in the previous section identified features of each of the algorithms that make them suitable
for TUI. All of the algorithms solve both the problems of action prediction and task generalization to some
degree. The data mining algorithms build models of their input that represent common subsequences in
the input sequence, and use these to predict the user’s future actions. These models represent simple
straight-line programs with no variables, loops, or conditionals. The Markov algorithms build probabilistic
representations of a noise-free input sequence, and predict the next action based on the actions immediately
prior to it. The Markov models represent multiple straight-line programs with many probabilistic choice
points.

While all the algorithms are useful for both problems, they suffer from several limitations. In this section,

we consider two hybrid algorithms that would be more useful for PBD.
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4.2.1 Using frequent patterns for prediction

None of the work on frequent pattern discovery has discussed exactly how to use the discovered patterns for
prediction; the association rules themselves are the interesting artifact of the discovery process. However, to
apply these algorithms to IUI, we would like to use association rules to predict the next user action based on
common patterns in the past. We imagine a straightforward approach: keep the list of frequent association
rules, in some order (e.g., from most specific to least specific using the length of a pattern as a measure of
its specificity). Every time a new user action occurs, compare the last N actions of the user’s action history
against each of the association rules. Return the first association rule whose left hand side matches the
history. This will return the most specific rule, but in the simplest case requires a linear search through the
set of association rules.

The next section sketches out an alternative algorithm for using association rules for prediction.

4.2.2 TUsing HMMs for task generalization

HMMSs may be used along with a data mining algorithm to assist in the prediction step. The drawback to
HMMs is that their input must be segmented by task, in order to use the sequence to train the appropriate
model. We propose an algorithm that uses a data mining algorithm to provide the necessary sequence
segmentation for input to a HMM algorithm.

Given the set of association rules found by one of the data mining algorithms, cluster! them into similar
groups of rules based on the task they are suited for. Train a HMM on each task cluster. This is very similar
to the application of HMMs to speech recognition as described in Rabiner [13].

To make a prediction for a given target sequence O, calculate the probabilities P(O|u) for each of the
models p using the Forward-Backward procedure. Pick the model i with the highest probability. Using the
Viterbi algorithm, find the optimal sequence of states X ... X7 for model i given the observed sequence O.
Assuming the model is now in state 7" at the end of this sequence, return the probability distribution for the

next token based on all possible transitions out of state T'.

1The problem of clustering user action sequences could be addressed in a paper of its own. A simple approach would be to
manually cluster based on an expert user’s knowledge of the user interface domain. We also imagine using automatic clustering

methods based on sequence similarity metrics such as the string edit distance metric described by Wang et al. [16].
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5 Related Work

Dietterich and Michalski [4] were among the first to consider the problem of learning from sequences. They
were primarily concerned with nondeterministic mathematical sequences such as those found in the card
game Eleusis, in which players try to guess the next card in a sequence by guessing the rule governing which
cards may be played in sequence. An example of such a rule is “play a card one point higher or one point
lower than the last card.” This rule is nondeterministic in that there is no single correct next card in the
sequence, but rather a set of cards (in this case, a disjunction of all the cards either one higher or one lower
than the last card). Dietterich and Michalski describe a framework for discovering these kinds of rules using
models and sequence transformations.

Plan recognition [6] is a related approach to the construction of intelligent user interfaces. Goodman
and Litman [5] add plan recognition to a chemical process design system. Their successes included the
ability to predict the user’s next action by finding a common action in all possible plans projected from
past actions. The major difference between plan recognition and the algorithms examined in this paper
is that plan recognition requires a large library of user plans. This requirement necessitates a potentially
large knowledge engineering effort. In addition, the plan recognition approach suffers from an inability to
recognize novel or original plans that may not be in the plan library; in effect, a plan library constrains the
possible tasks a user is able to accomplish with the aid of the system. In contrast, the approaches surveyed
in this work do not require any domain-specific knowledge.

The problem of goal recognition as formulated in [8] is similar to the sequence learning algorithms surveyed
in this paper. Lesh and Etzioni define a goal recognition problem as finding the set of goals that are consistent
with a user’s observed sequence of actions. In contrast with the data mining algorithms described in this
paper, their system requires as input a set of possible goal schemas; the user is assumed to have as a goal
one of the (instantiated) goals in this set.

There is much work on hidden Markov models, although none applying HMMs directly to the problems
of TUT addressed in this paper. The basic HMM algorithms described by Rabiner assume a fixed model
structure. One of the open problems in applying HMMs to IUI is that there is no natural mapping from

entities in the domain to the set of states in the HMM, so there is no natural way to choose a model structure.
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To address this problem, Stolcke and Omohundro [15] describe an algorithm for inducing the most probable
model from multiple training sequences.

Research on time series is related to the problem of sequence learning. A time series is a sequence of
real-valued observations that vary over time. Work in this area includes finding similarities between time
series [3], which could be useful in determining the similarity of patterns in the data mining algorithms.

The MSDD algorithm [12] finds patterns in multiple streams of data, such as the outputs of a robot’s
sensors. MSDD finds patterns of the form “f an instance of pattern z begins in the streams at time ¢,
then an instance of pattern y will begin at time ¢ + § with probability p.” MSDD is similar to WINEPI
in that it finds patterns within a constant sized window of time; however, it finds patterns over multiple
input sequences rather than WINEPT’s single input sequence. MSDD’s multiple input streams are similar to
AprioriAll’s customer-sequences, except that MSDD’s streams are assumed to be causally related whereas
AprioriAll’s customer-sequences are independent. MSDD finds patterns spanning multiple streams while
AprioriAll finds patterns confined to a single stream.

The SEQUITUR system infers sequential structure in a single long sequence. SEQUITUR finds a hierarchical
representation of the original sequence that may be used to recreate the sequence exactly. SEQUITUR’s
operation is driven by two constraints: digram uniqueness (no pair of adjacent symbols appears more than
once in the grammar) and rule utility (each nonterminal rule must be used at least twice). SEQUITUR is
most related to the TDAG algorithm in that it finds regularities in a sequence based on the adjacency
of tokens. Whereas TDAG generalizes from the input sequence to a probabilistic model that is able to
generate other sequences similar to the input sequence, SEQUITUR performs no generalization. However,
SEQUITUR abstracts contiguous subsequences into single nonterminals that represent multiple tokens in the

input sequence, and thus could potentially useful for programming by demonstration.

6 Conclusions

We have proposed two challenges for intelligent user interfaces (and programming by demonstration in
particular): action prediction and task generalization. Both of these problems are fundamentally sequence

learning problems.
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In light of these two challenges, we surveyed four algorithms for sequence learning. The WINEPT and
AprioriAll data mining algorithms find frequent patterns in a large database of input sequences. Hidden
Markov models and TDAG build a statistical model of the input sequence. We generalized WINEPI and
AprioriAll into a common framework and described them both in terms of this framework.

We compared these four algorithms in terms of a taxonomy of the problem space. The main distinction is
the type of model each algorithm builds of its input. WINEPI and AprioriAll extract the common patterns
in a large sequence of noisy data. HMMs and TDAG build a probabilistic model of an input sequence that
is assumed to come from a single noise-free process.

None of the algorithms are perfectly suited to solve the PBD challenges of action prediction or task
generalization. We have described two hybrid approaches that combine elements of each of the algorithms

to create algorithms that are potentially more suitable for PBD.
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