
CoScripter: Automating & Sharing  
How-To Knowledge in the Enterprise 
Gilly Leshed1, Eben M. Haber2, Tara Matthews2, Tessa Lau2

1Information Science, Cornell University 
301 College Ave., Ithaca, NY 14850  

gl87@cornell.edu 

2IBM Almaden Research Center 
650 Harry Rd., San Jose, CA 95120 

{ehaber, tlmatthe, tessalau} @us.ibm.com 
 

ABSTRACT 
Modern enterprises are replete with numerous online proc-
esses. Many must be performed frequently and are tedious, 
while others are done less frequently yet are complex or 
hard to remember. We present interviews with knowledge 
workers that reveal a need for mechanisms to automate the 
execution of and to share knowledge about these processes. 
In response, we have developed the CoScripter system (for-
merly Koala [ 11]), a collaborative scripting environment for 
recording, automating, and sharing web-based processes. 
We have deployed CoScripter within a large corporation for 
more than 10 months. Through usage log analysis and in-
terviews with users, we show that CoScripter has addressed 
many user automation and sharing needs, to the extent that 
more than 50 employees have voluntarily incorporated it 
into their work practice. We also present ways people have 
used CoScripter and general issues for tools that support 
automation and sharing of how-to knowledge. 

ACM Classification Keywords 
H.5.3 Group and organization interfaces: web-based inter-
action.  

Author Keywords 
Automation, scripting, programming-by-demonstration, 
procedural knowledge, knowledge sharing, wiki, user study. 

INTRODUCTION 
Employees in modern enterprises engage in a wide variety 
of web-based processes as part of their day-to-day work. 
Some of these processes must be performed frequently and 
are tedious (e.g., conference room reservations). Others are 
less frequent but can be hard to perform because they re-
quire intricate domain knowledge (e.g., expense reim-
bursement, procurement), are difficult to locate (e.g., select-
ing insurance beneficiaries), or are too complex to remem-
ber. Knowledge of these processes is distributed throughout 

an enterprise, leading employees to spend excessive effort 
not only in learning processes, but also in completing them. 

Automation could help users complete web-based processes 
more quickly. However, most people do not have the neces-
sary skills for developing custom automation. Further, it is 
unlikely that businesses will spend the resources to develop 
automated processes for all tasks due to the sheer number of 
processes and their frequently-changing nature [ 3, 13]. 

Workplace social networks can help with the creation and 
distribution of how-to knowledge [ 15]. However, often em-
ployees may not know whom to ask and even if they know, 
it burdens experienced members of a community. 

Our solution to these problems is CoScripter (formerly Ko-
ala [ 11]), a tool that enables end-users to create and share 
scripts to perform web-based processes. CoScripter consists 
of two components: (1) a browser plug-in that allows users 
to record and play back actions in a web browser, storing 
these actions as scripts of human-readable text, and (2) a 
wiki that serves as a central repository, where users can 
share, edit, rate, and search for scripts. CoScripter has been 
deployed within a large corporation since November 2006, 
and is regularly used by more than 50 employees at present. 

By recording user actions, CoScripter captures how-to 
knowledge, helping materialize tacit knowledge (i.e., prac-
tical knowledge that is in people’s heads) in an explicit 
form. This enables a continuous dialogue between tacit and 
explicit knowledge, and as such builds the organization’s 
body of knowledge [ 17], by translating these types of 
knowledge back and forth and transmitting them across the 
organization. Furthermore, by sharing this knowledge 
across communities of practice, CoScripter supports the 
transfer of best practices within an organization. As such, it 
has the potential to solve what Szulanski calls “internal 
stickiness,” that is, the difficulty in transferring practical 
knowledge [ 22]. 

 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2008,  April 5–10, 2008, Florence, Italy. 
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00. 

Our work brings together three main contributions. First, 
we present results from an interview study that explores 
how people practice, learn, and share their procedural 
knowledge in the enterprise. Second, we present results 
from an extended deployment of an end-user programming 
system in a large organization. Finally, we discuss a num-
ber of general issues that arose in the deployment that must 



be addressed by any similar system to succeed in a large 
company setting. 

RELATED WORK 
Here we present prior work related to our three main con-
tributions: user studies of end-user programming systems to 
which our second interview study adds new findings; em-
pirical studies of organizational knowledge sharing, upon 
which our first interview study builds; and tools for auto-
mation and sharing, like CoScripter. 

User Studies of End-User Programming 
Studies of end-user programming have a rich history. Nardi 
discovered collaboration practices that arose around spread-
sheet and CAD tools [ 16], Rosson et al. examined end-user 
web development, showing that most tools are not up to the 
needs of non-programmers [ 19], and, Dorn and Guzdial 
report on the informal learning of programming skills by 
graphic designers [ 7]. We add to this body of knowledge, 
studying the use of an explicitly distributed and collabora-
tive end-user programming tool (CoScripter) and describing 
the different communities and sharing practices that arose 
from its use. 

Empirical Studies of Organizational Knowledge Sharing 
Knowledge Management considers how organizations rep-
resent, create, and disseminate knowledge to improve their 
competitiveness in the business world [ 5, 18, 20]. Empirical 
studies are common (see a review in [ 2]), as are studies of 
internal knowledge transfer [ 22] that search for causes of 
“information stickiness.” 

Past studies help us to understand practices of sharing how-
to knowledge in organizations. Edwards and Mahling [ 8] 
present a set of practices for sharing procedural knowledge 
in law offices, but their analysis was not based on an em-
pirical method. Other research has presented analyses based 
on field studies of general knowledge sharing practices and 
needs in employees’ work [ 1, 10, 14], factual, scientific 
knowledge sharing [ 4], and FAQs development and sharing 
[ 9]. Perhaps most related is a field study of service techni-
cians and their practices in seeking information to solve 
problems [ 23]. However, it focused on a small community 
and on specific problem solving practices. 

We add to the body of empirical work exploring organ-
izational knowledge sharing by focusing on practices that 
could be improved by both automating processes and shar-
ing them. We follow Suchman’s call to observe the actual 
work involved in accomplishing procedural tasks [ 21]. 

Tools for Supporting Automation and Sharing 
CoScripter is a tool that brings together known ideas in a 
novel combination: (1) it allows end-user automation of 
procedures through recording and scripting, and (2) it stores 
scripts on a shared central wiki. 

The programming-by-demonstration (PBD) approach used 
in CoScripter has a very long history [ 6]. Other browser 
recording and playback tools exist (e.g., iMacros 
(http://www.iopus.com/imacros/), but none have used a 
human-readable recording format as in [ 12] together with a 
collaborative script repository. 

Wikis have been growing in popularity as collaborative 
information repositories, but have seldom been used as a 
programming environment. There are some wiki implemen-
tations that support programming as a means of adding dy-
namic content (e.g., Swiki (http://wiki.squeak.org/swiki/), 
QEDWiki (http://services.alphaworks.ibm.com/qedwiki/)), 
but CoScripter is unique in supporting scripts whose execu-
tion accomplishes some task outside of the wiki. Other en-
vironments for sharing knowledge about procedural tasks 
(e.g., wikihow (http://www.wikihow.com/), howtoforge 
(http://howtoforge.com/), and howtopedia (http://howtope-
dia.org/)) typically consist of offline procedures that must 
be created and executed manually, unlike CoScripter’s re-
cordable and runnable scripts.  

This unique combination of features, namely, PBD-based 
recording of human-readable scripts and a wiki-based re-
pository, is exceptionally powerful. It allows any employee 
to record scripts, share them with others, or search and learn 
from the central repository of human-readable scripts. 

INTERVIEW STUDY 1: EXISTING NEEDS  
We performed an initial study, interviewing employees in a 
large corporation, to understand what business processes 
were important in their jobs, and to identify existing prac-
tices and needs for learning and sharing these processes. 

Participants 
We recruited 18 employees of the large corporation in 
which CoScripter was deployed. Since our goal was to un-
derstand business process use and sharing, we contacted 
employees who were familiar with the organization’s busi-
ness processes and for whom procedures were a substantial 
part of their everyday work. Our participants had worked at 
the corporation for an average of 19.4 years (ranging from a 
few weeks to 31 years, with a median of 24 years). Twelve 
participants were female. Seven participants served as assis-
tants to managers, either administrative or technical; 6 held 
technological positions such as engineers and system ad-
ministrators; 3 were managers; and 2 held human resource 
positions. The technology inclination ranged from engi-
neers and system administrators on the high end to adminis-
trative assistants on the low end. All but two worked at the 
same site within the organization.  

Method 
We met our participants in their offices. Our interviews 
were semi-structured; we asked participants about their 
daily jobs, directing them to discuss processes they do both 
frequently and infrequently. We prompted participants to 

 



demonstrate how they carry out these procedures, and 
probed to determine how they obtained the knowledge to 
perform them and their practices for sharing them. Sessions 
lasted approximately one hour and were video-recorded 
with participants’ permission (only one participant declined 
to be recorded). 

Results 
We analyzed data collected in the study by carefully exam-
ining the materials – video-recordings, their transcripts, and 
field notes. We coded the materials, marking points and 
themes that referred to our exploratory research goals: (1) 
common, important business processes, and (2) practices 
and needs for learning and sharing processes. 

Note that with our study method, we did not examine the 
full spectrum of the interviewees’ practices, but only those 
that they chose to talk about and demonstrate. Nonetheless, 
for some of the findings we present quantified results based 
on the coded data. In the rest of the paper, wherever a refer-
ence is made to a specific participant, they are identified by 
a code comprised of two letters and a number. 

What Processes Do Participants Do? 
We asked our participants to describe business processes 
they perform both frequently and infrequently. The tasks 
they described included web-based processes, other online 
processes (e.g., processes involving company-specific tools, 
email, and calendars), and non-computer-based processes. 
Given that CoScripter is limited to a Firefox web browser, 
we focused on the details of web-based tasks, but it is clear 
that many business processes take place outside a browser. 

We found that there was a significant amount of overlap in 
the processes participants followed. Seventeen participants 
discussed processes that were mentioned by at least one 
other participant. Further, we found that a core set of proc-
esses was performed by many participants. For example, 14 
participants described their interactions with the online ex-
pense reimbursement system. Some other frequently men-
tioned processes include making travel arrangements in an 
online travel reservation system, searching for and reserv-
ing conference rooms, and purchasing items in the pro-
curement system. These findings show that there exists a 
common base of processes that many employees are re-
sponsible for performing. 

Despite a common base of processes, we observed consid-
erable personal variation, both within a single process and 
across the processes participants performed. A common 

cause for variation within a single process was that the ex-
act input values to online tools were often different for each 
person or situation. For example, DS1 typically travels to a 
specific destination, whereas LH2 flies to many different 
destinations. We observed variations like these for all par-
ticipants. Secondly, there were a number of processes that 
were used by only a small number of people. Eleven par-
ticipants used web-based processes not mentioned by oth-
ers. For instance, TD1, a human resource professional, was 
the only participant to mention using an online system for 
calculating salary base payments. These findings suggest 
that any process automation solution would need to enable 
personalization for each employee’s particular needs. 

Our participants referred to their processes using various 
qualities, including familiarity, complexity, frequency, in-
volvement, etc. Some of these qualities, such as complexity, 
were dependent on the task. For example, purchasing items 
on the company’s procurement system was a challenging 
task for most participants. Other qualities, such as familiar-
ity and frequency, varied with the user. For example, when 
demonstrating the use of the online travel system, we saw 
CP1, a frequent user, going smoothly through steps which 
DM1 struggled with and could not remember well. We ob-
served that tasks that were frequent or hard-to-remember 
for a user may be particularly amenable to automation. 

Frequent processes. Participants talked about 26 different 
processes they performed frequently, considering them te-
dious and time-consuming. For example, JC1 said: “[I] pay 
my stupid networking bill through procurement, and it’s the 
same values every month, nothing ever changes.” Automa-
tion of frequent processes could benefit users by speeding 
up the execution of the task. 

Hard-to-remember processes. At least 8 participants men-
tioned processes they found hard to remember. We ob-
served two factors that affected procedure recall: its com-
plexity and its frequency (though this alignment was not 
absolute). In general, tasks completed infrequently, or that 
had complex steps, were often considered hard-to-
remember. For example, a user of the procurement system 
said, “It’s not so straightforward, so I always have to con-
tact my assistant who contacts someone in finance to tell 
me these are the right codes that you should be using.” Al-
ternatively, although AB1 frequently needed to order busi-
ness cards for new employees, it involved filling out multi-
ple data fields she found hard to remember. Automation 
could benefit users of hard-to-remember tasks by relieving 
the need to memorize their steps.  



Fig

How Do Participants Share Knowledge? 
An important goal of our interviews was to develop an un-
derstanding of the sharing practices that exist for procedural 
knowledge. Thus, we asked participants how they learned 
to perform important processes, how they captured their 
procedural knowledge, and how and with whom they 
shared their own procedural knowledge. 

Learning. Participants listed a variety of ways by which 
they learned procedures, most of them listing more than one 
approach. Figure 1 shows the different ways people learned 
procedures. Note that the categories are not mutually exclu-
sive. Rather, the boundaries between contacting an expert, a 
colleague, and a mentor were often blurred. For example, 
KR1 needed help with a particular system and mentioned 
contacting her colleague from next door, who was also an 
expert with the system. Participants often said they would 
start with one learning approach and move to another if 
they were unsuccessful. Interestingly, although each par-
ticipant had developed a network of contacts from which to 
learn, they still use trial-and-error as a primary way of get-
ting through procedures: 13 out of 18 participants men-
tioned this approach for obtaining how-to knowledge. This 
finding indicates that learning new procedures can be diffi-
cult, and people largely rely on trial-and-error. 

For maintaining the acquired knowledge, 15 out of 18 par-
ticipants kept or consulted private and/or public repositories 
for maintaining their knowledge. For the private reposito-
ries, participants kept bookmarks in their browsers as point-
ers for procedures, text files with “copy-paste” chunks of 
instructions on their computer desktops, emails with lists of 
instructions, as well as physical binders, folders, and cork-
boards with printouts of how-to instructions. Figure 2 
shows sample personal repositories. Users create their own 
repositories to remember how to perform tasks. 

Figure 2: Ways pa
trative assistant’s p
tions (left); a compu
and scripts of a syste

One participant noted an important problem with respect to 
capturing procedural knowledge: “Writing instructions can 
be pretty tedious. So, if you could automatically record a 
screen movie or something, that would make it easier to 
[capture] some of the instructions. It would be easy to get 
screenshots instead of having to type the stories.” This 
feedback indicates that an automatic procedure 
recording mechanism would ease the burden of 
capturing how-to knowledge (for personal or 
public use). 

Sharing. Eleven participants reported that they 
maintain public repositories of processes and 
“best practices” they considered useful for their 
community of practice or department. These 
repositories were commonly shared as databases 
accessible through the corporate email client. 
Four participants noted that although their re-
pository was publicly open for posting and read-
ing, they were the sole users of it. DS2 said: “I 

deve
com
but 
part
shar
distr
whic
seve
proa
ful p

Fifte
tion
on r
with
pant
as m
part
prof
com

Peop
ticip
and 
for 
liste
mun
if th
caus

 

How procedures were learned

0 2 4 6 8 10 12 14

Documentation

Training

Online search

Helpdesk

Mentor

Colleage

Expert

Trial and error

Frequency
 

ure 1: Frequency of ways participants learned new processes.
 
rticipants maintain their procedural knowledge: one adminis-
hysical binder with printouts of emails with how-to instruc-
ter desktop folder named ‘Cookbook’ with useful procedures 
m administrator (right). 

loped this, and I sent a link to everyone. People still 
e to me, and so I tell them: well you know it is posted, 
let me tell you.” Using public repositories suggests that 
icipants sought an open forum for others to find and 
e their how-to knowledge. However, knowledge was 
ibuted across multiple single-authored repositories, 
h may have made it harder for learners to find. In fact, 
n participants reported that they had resorted to more 
ctive sharing methods, such as sending colleagues use-
rocedures via email. 

en participants said they serve as sources of informa-
 for many others (this number is high due to our focus 
ecruiting senior members of the organization or people 
 information sharing as a job function). These partici-
s earned their position as knowledge sharers by serving 
entors for other employees; by assuming this role as 

 of their position (e.g., administrative assistants, HR 
essionals, etc.); and by simply being known in their 
munity as experts for various processes. 

le in need find experts in a variety of ways. One par-
ant said, “I’m usually one of the people who gets called 
[contacted via IM] and emailed because I’ve been at it 
too long.” An experienced administrative assistant was 
d as an expert for the administrative assistants’ com-
ity in the company’s directory: “They will contact you 
ey have questions regarding, let’s say, archiving. Be-
e I’m on the list, they’ll call me.” 



These results give examples of employees who seek to 
share their how-to knowledge within the company and ways 
in which learners find the knowledge. Nonetheless, our 
results show that sharing is time-consuming for experts and 
shared repositories are seldom used by learners, suggesting 
that sharing could be bolstered by new mechanisms for 
distributing procedural knowledge. 

 Figure 3: CoScripter sidebar  
(appears on left side of Firefox 
browser) with a script and data in 
the personal database. 

Discussion 
Study 1 has shown that there is a need for tools that support 
the automation and sharing of how-to knowledge in the 
enterprise. We observed a core set of processes used by 
many participants, as well as less-common processes. Proc-
esses that participants used frequently were considered rou-
tine and tedious, whereas others were considered hard-to-
remember. Automating such procedures could accelerate 
frequent procedures and overcome the problem of recalling 
hard-to-remember tasks. 

Our data also suggest that existing solutions do not ade-
quately support the needs of people learning new processes. 
Despite rich repositories and social ties with experts, men-
tors, and colleagues, people habitually apply trial-and-error 
in learning how to perform their tasks. New mechanisms 
are needed for collecting procedural knowledge to help 
people find and learn from it. 

We also found that people who were sources of how-to 
knowledge needed better ways for capturing and sharing 
their knowledge. These people were overloaded by writing 
lengthy instructions, maintaining repositories with “best 
practices,” and responding to requests from others. Also, 
distribution of their knowledge was restricted due to limited 
use of repositories and bounds on the time they could spend 
helping others. As such, automating the creation and shar-
ing of instructions could assist experts in providing their 
knowledge to their community and colleagues. 

We now turn to describing CoScripter, a system we devel-
oped to support the needs uncovered in our interviews. 

COSCRIPTER: COLLABORATIVE SCRIPTING 
CoScripter is a system that enables users to record, play 
back, edit, and share web-based tasks. An earlier paper de-
scribes in more detail its mechanisms for recording, play-
back, sloppy interpretation, and script personalization [ 11]. 
We summarize these mechanisms below.  

CoScripter includes a plug-in for the Firefox browser, 
which appears as a browser sidebar (Figure 3). This plug-in 
can record a user’s actions in the browser and play them 
back at a later time. User actions are recorded as pseudo-
natural-language instructions such as “go to 
http://portal.acm.org” and “click the Search button.” Be-
cause these instructions are purely textual, and do not re-
quire a precise syntax, CoScripter scripts can be read and 
modified by people as easily as reading and editing text. 

CoScripter can also parse 
these instructions, and 
programmatically execute 
them in order to 
automatically perform the 
steps in a script. Scripts 
may be executed all at once 
using a “run” mode, which 
enables people to automate 
frequent or rote tasks. 
Scripts may also be 
executed one step at a time, 
which is useful for learning 
how to perform complex or 
unfamiliar tasks. 

Some steps require the user 
to take an action before 
continuing, such as entering 
their password. These steps 
are recognized by the 
presence of the word “you” 
in the instruction. When 
encountering such a step, 
CoScripter will pause and 
wait for the user to follow 
the instruction before 
continuing. This “mixed-
initiative” style of interaction enables users to benefit from 
partial automation. 

Scripts can also be personalized through the use of a “per-
sonal database” of name/value pairs initially seeded from 
the corporate employee directory (bottom part of Figure 3). 
During recording, if a value in the personal database is en-
tered into a form, the instruction will generalize the step to 
refer to the named variable instead. During playback, values 
from the user’s personal database will be substituted into 
the script at the appropriate point. This feature facilitates 
script re-use by making scripts more general, only personal-
izing the script at run-time. 

Scripts are, by default, stored publicly on the CoScripter 
wiki to enable sharing between users, though users may 
mark scripts as private to prohibit others’ access. Users can 
also browse, tag, rate, edit, and run any public script di-
rectly from the wiki. Thus the wiki serves as a central re-
pository of “how-to” knowledge. Experts can share their 
knowledge by recording their actions and publishing the 
results on the wiki, and learners can easily find it there. 

STUDY 2: REAL-WORLD USAGE 
The first interview study explored needs and practices of 
sharing how-to information. In a second study, we exam-
ined how well CoScripter supports these needs and prac-
tices through analysis of usage logs and interviews with 
regular users. The purpose of these studies was threefold: 



(1) determine how well CoScripter supported the user needs 
discovered in Study 1, (2) learn how users had adapted Co-
Scripter to their needs, and (3) uncover outstanding prob-
lems to guide future CoScripter development. 

Log Analysis: Recorded User Activity 
CoScripter has been available within a large corporation 
since November 2006. Usage logs provide a broad over-
view of how CoScripter has been used in one company, 
while the interviews in the following section provide more 
in-depth examples of use. In this section we present an ini-
tial analysis of quantitative usage, with a content analysis 
left to future work. The data reported here excludes the ac-
tivities of CoScripter developers.  

Script Usage Patterns 
Users are able to view scripts on the CoScripter wiki 
anonymously; registration is only required to create, mod-
ify, or run scripts. Of the 1200 users who registered, 601 
went on to try out the system. A smaller subset of those 
became regular users, either recently or in the past. 

We define active users as people who have run scripts at 
least five times with CoScripter, used it for a week or more, 
and used it within the past two months. Fifty-four users (9% 
of 601 users) are active users. These users, on average, cre-
ated 2.1 scripts; ran 5.4 distinct scripts; ran scripts 28.6 
times total; and ran a script once every 4.5 days. While 9% 
may seem to be a relatively low fraction, we are impressed 
by the fact that 54 people have voluntarily adopted Co-
Scripter, and derive enough value from it to make it a part 
of their work practices. 

We define past users as those who were active users in the 
past, but have not used CoScripter in the past two months. 
This category consists of 43 users (7%). Finally, we define 
experimenters as those who tried CoScripter without be-
coming active users, of which we have 504 users (84%). 

The logs suggest that individual users are automating fre-
quent tasks, with 23 scripts run 10 or more times by single 
users at a moderate interval (ranging from every day to 
twice per month).  

Collaborating over Scripts 
One of the goals of CoScripter is to support sharing of how-
to knowledge. The logs imply that sharing is relatively 
common: 24% of 307 user-created scripts were run by two 
or more different users, and 5% were run by six or more 
users. People often run scripts created by others: 465 (78%) 
of the user population ran scripts they did not create, run-
ning 2.3 scripts created by others on average. There is also 
evidence that users are sharing knowledge of infrequent 
processes: we found 16 scripts that automate known busi-
ness processes within our company (e.g., updating emer-
gency contact info), that were run once or twice each by 
more than ten different users. 

In addition to the ability to run and edit others’ scripts, Co-
Scripter supports four other collaborative features: editing 
others’ scripts, end-user rating of scripts, tagging of scripts, 
and free-form comments added to scripts. We found sur-
prisingly little use of these collaborative features: fewer 
than 10% of the scripts were edited by others, rated, tagged, 
or commented on. Further research is needed to determine 
whether and how these features can be made more valuable 
in a business context. 

Email Survey of Lapsed Users 
To learn why employees stopped using CoScripter, we sent 
a short email survey to all the experimenters and past users, 
noting their lack of recent use and asking for reasons that 
CoScripter might not have met their needs. Thirty people 
replied, and 23 gave one or more reasons related to Co-
Scripter. Of the topics mentioned, ten people described re-
liability problems where CoScripter did not work consis-
tently, or did not handle particular web page features (e.g., 
popup windows and image buttons); five people said their 
tasks required advanced features not supported in CoScrip-
ter (most commonly requested were parameters, iteration, 
and branching); three people reported problems coordinat-
ing mixed initiative scripts, where the user and CoScripter 
alternate actions; and two had privacy concerns (i.e., they 
did not like scripts being public by default). Finally, seven 
people reported that their jobs did not involve enough tasks 
suitable for automation using CoScripter. 

Interview Study 2: CoScripter Usage 
In a second set of interviews, we explored the actual usage 
of CoScripter by talking with users who had made CoScrip-
ter part of their work practices. 

Participants 
Based on usage log analysis, we chose people who had used 
one or more scripts at least 30 times. We also selected a few 
people who exhibited interesting behavior (e.g., editing 
other peoples’ scripts or sharing a script with others). We 
contacted 14 people who met these usage criteria; 8 agreed 
to an interview. 

Seven interviewees were active CoScripter users, one had 
used the tool for five months and stopped 3½ months before 
the interview. Participants had used CoScripter for an aver-
age of roughly 4 months (minimum of 1, maximum of 9). 
They had discovered the tool either via email from a co-
worker or on an internal website promoting experimental 
tools for early adopters. Seven participants were male, and 
they worked in 8 sites across 4 countries, with an average of 
10 years tenure at the company. We interviewed 4 manag-
ers, 1 communications manager, 1 IT specialist, 1 adminis-
trative services representative, and 1 technical assistant to a 
manager / software engineer. Overall, our participants were 
technology savvy, and five of them had created a macro or 
scripts before CoScripter. However, only two of them 
claimed software development expertise. 

 



benefit of CoScripter: it lowered the barrier for automation, 
since it required no programming skills.  

Though most participants interacted with CoScripter via the 
sidebar or the wiki, JL1 and PV1 invoked CoScripter in 
unexpected ways. JL1 used the Windows Task Scheduler to 
automatically run his script periodically in the background. 
Thus, after creating his script, JL1 had no contact with the 
CoScripter user interface. PV1 created a bookmark to 
Table 1: Description of routine tasks automated by CoScripter. 

User Scripted Task Sharing Frequency Run 
JL1 Send a page via an online 

paging tool. 
Private M-F: 6 runs / day 

Sa-Su: 3 runs / day 
PV1 Login to two technical support 

voicemail inboxes and check for 
new messages (2 scripts). 

Public Many runs / day 

AM1 Fill in a form to register service 
packs for clients (form data is 
the same for each client). 

Private 20-30 runs / day 

CR1 Change call forwarding and Public Several runs / day 

phone status messages (9 
scripts). 

Method 
We conducted all but one of our interviews over the phone, 
due to geographically dispersed participants, using Net-
Meeting to view the participant’s Firefox browser. Inter-
views lasted between 30 and 60 minutes and were audio-
recorded with participants’ permission in all cases but one. 

We conducted a semi-structured interview based on ques-
tions that were designed to gather data about how partici-
pants used CoScripter, why they used it, and what problems 
they had using the tool. In addition to the predetermined 
questions, we probed additional topics that arose during the 
interview, such as script privacy and usability. We also 
asked participants to run and edit their scripts so we could 
see how they interacted with CoScripter. 

Results 
Interview Study 1 established user needs for automating 
frequent or hard-to-remember tasks, and sharing how-to 
knowledge. Study 2 explored how well CoScripter meets 
these user needs and areas where it falls short.  

Automating Frequent or Hard-to-Remember Tasks 
Four participants described CoScripter as very useful for 
automating one or more frequent, routine tasks. Each per-
son had different tasks to automate, highlighting various 
benefits of CoScripter as an automation tool. Table 1 lists 
the most frequent routine tasks that were automated. 

Those four subjects described instances where CoScripter 
saved them time and reduced their effort. For example, CR1 
said, “Two benefits: one, save me time – click on a button 
and it happens – two, I wouldn’t have to worry about re-
membering what the address is of the messaging system 
here.” PV1 also appreciated reduced effort to check voice-
mail inboxes, “I set up [CoScripter] to with one click get 
onto the message center.” AM1 used his service pack regis-
tration script for a similar reason, saying it was “really at-
tractive not to have to [enter the details] for every single 
service pack I had to register.” JL1 runs his script many 
times during non-business hours. He would not be able to 
do this without some script (unless, as he said, “I didn’t 
want to sleep”). 

These participants, none of whom have significant software 
development experience, also demonstrate an important 

automatically run each of his two scripts, and added them to 
his Firefox Bookmarks Toolbar. To run the scripts, he sim-
ply clicked on the bookmarks – within a few seconds he 
could check both voicemail inboxes. 

In addition to automating frequent tasks, CoScripter can act 
as a memory aid for hard-to-remember tasks. For example, 
DG1 created scripts for two new processes he had to do for 
his job. Both scripts used an online tool to create and send 
reports related to customer care. Creating the report in-
volved a number of complicated steps, and CoScripter 
made them easier to remember: 

“[CoScripter] meant I didn’t have to remember each step. 
There were probably six or seven distinct steps when you have 
to choose drop-downs or check-boxes. It meant I didn’t have 
to remember what to do on each step. Another benefit is I had 
to choose eight different checkboxes from a list of about forty. 
To always scan the list and find those eight that I need was a 
big pain, whereas [CoScripter] finds them in a second. It was 
very useful for that.” 

After using CoScripter to execute these scripts repeatedly 
using the step-by-step play mode (at least 28 times for one 
script, 9 times for the other) for five months, DG1 stopped 
using them. He explained: “It got to the point that I memo-
rized the script, so I stopped using it.” This highlights an 
interesting use case for CoScripter: helping a user memo-
rize a process that they want to eventually perform on their 
own. 

Participant LH1 found CoScripter useful in supporting 
hard-to-remember tasks, by searching the wiki and finding 
scripts others had already recorded: “I found the voicemail 
one, it’s really useful because I received a long email in-
struction how to check my voicemail. It was too long so I 
didn’t read it and after a while I had several voicemails and 
then I found the [CoScripter] script. It’s really useful.” 

Automation Limitations and Issues. Despite generally 
positive feedback, participants cited two main issues that 
limited their use of CoScripter as an automation tool, both 
of which were named by lapsed users who were surveyed 
by email: reliability problems and a need for more ad-
vanced features. 

Four out of eight participants noted experiencing problems 
with the reliability and robustness of CoScripter’s automa-
tion capability. All of these participants reported problems 
related to CoScripter misinterpreting instructions. Misinter-
pretation was a result of CoScripter’s human-readable 



scripting system, which does not enforce any particular 
syntax, but instead does best-effort interpretation of arbi-
trary text. For example, one user reported running a script 
that incorrectly clicked the wrong links and navigated to 
unpredictable pages (e.g., an instruction to “click the Health 
link,” when interpreted on a page that does not have a link 
labeled “Health,” would instead click a random link on the 
page. This results from CoScripter’s sloppy programming 
approach as described in [ 11]). Another user reported that 
his script could not find a textbox named in one of the in-
structions and paused execution. Misinterpretation prob-
lems were exacerbated by the dynamic and unpredictable 
nature of the web, where links and interface elements could 
be changed or removed. 

Five users reported wanting more advanced programming 
language features, to properly automate their tasks. In par-
ticular, participants expressed a need for automatic script 
restart after mixed-initiative user input, iteration, script de-
bugging help, and conditionals. 

Sharing How-To Knowledge 
Our interviews revealed some of the different ways Co-
Scripter has been used to share how-to knowledge. These 
included teaching tasks to others, promoting information 
sources and teaching people how to access them, and learn-
ing how to use CoScripter itself by examining or repurpos-
ing other peoples’ scripts. 

Participants used CoScripter to teach other people how to 
complete tasks, but in very different ways. The first person, 
LH1, recorded scripts to teach her manager how to do sev-
eral tasks (e.g., creating a blog). LH1 then emailed her 
manager a link to the CoScripter script, and the manager 
used CoScripter to complete the task. The second person, 
DG1, managed support representatives and frequently sent 
them how-to information about various topics, from gener-
ating reports online to using an online vacation planner. 
DG1 used CoScripter to record how to do the tasks, and 
then copied and pasted CoScripter’s textual step-by-step 
instructions into emails to his colleagues: 

“When I want to give people instructions on how to do some-
thing on the Internet, it was great for doing that so I didn’t 
have to write them out. I found it very useful for that, creating 
clear instructions on what to do. I sent the text, but I never 
sent the link so that they could just run it. I never actually sent 
a script to someone because I didn’t know anyone who used 
the tool. I could have asked people to install it, but I never did. 
I tend to work with others who are afraid of new technology. I 
used that a number of times. For that it did exactly what I 
needed.” 

DG1’s use of CoScripter highlights a benefit of its human-
readable approach to scripting. The scripts recorded by Co-
Scripter are clearly readable, since DG1’s colleagues were 
able to use them as textual instructions. 

Another participant, MW1, a communications manager, 
used CoScripter to promote information that is relevant to 
employees in a large department and to teach them how to 
access that information. He created one script for adding a 
news feed to employees’ custom intranet profile and a sec-
ond script to make that feed accessible from their intranet 
homepage. He promoted these scripts to 7000 employees by 
posting a notice on a departmental homepage and he plans 
to send links to the scripts in an upcoming email. Before 
using CoScripter, MW1 said he did not have a good method 
for sharing this how-to information with a wide audience. 
With such a large audience, however, correctly generalizing 
the script was a challenge; MW1 said he spent two to three 
hours getting the scripts to work for others. Still, MW1 was 
so pleased that he evangelized the tool to one of his col-
leagues, who has since used CoScripter to share similar 
how-to knowledge with a department of 5000 employees. 

Participants used CoScripter for a third sharing purpose: 
three people talked about using other peoples’ scripts to 
learn how to create their own scripts. For example, PV1 
told us that his first bug-free script was created by duplicat-
ing and then editing someone else’s script. 

Sharing Limitations and Issues. Though some participants 
found CoScripter a valuable tool for sharing, these partici-
pants noted limitations of critical mass and others raised 
issues about the sharing model, generalizability, and pri-
vacy, which were barriers to sharing. 

Sharing has been limited by the narrow user base (so far) 
within the enterprise. As CR1 said, critical mass affected 
his sharing (“I haven’t shared [this script] with anyone else. 
But there are other people I would share it with if they were 
CoScripter users.”), and his learning (“I think I would get a 
lot more value out of it if other people were using it. More 
sharing, more ideas. Yet most of the people I work with are 
not early adopters. These people wouldn’t recognize the 
difference between Firefox and Internet Explorer.”). DG1, 
who sent CoScripter-generated instructions to his cowork-
ers via email, could have more easily shared the scripts if 
his coworkers had been CoScripter users. 

We also saw problems when users misunderstood the wiki-
style sharing model. For example, PV1 edited and modified 
another person’s script to use a different online tool. He did 
not realize that his edits would affect the other person’s 
script until later: “I started out by editing someone else’s 
script and messing them up. So I had to modify them so 
they were back to what they were before they were messed 
up, and then I made copies.” A second participant, PC1, had 
deleted all the contents of a script and did not realize this 
until the script was discussed in the interview: “That was an 
accident. I didn’t know that [I deleted it]…. When I look at 
those scripts, I don’t realize that they are public and that I 
can blow them away. They come up [on the sidebar] and 
they look like examples.” 

 



Easy and effective ways to generalize scripts so that many 
people can use them is essential to sharing. Though users 
are able to generalize CoScripter scripts, participants told us 
it is not yet an easy process. For example, MW1 created a 
script for 7000 people, but spent a few hours getting it to 
work correctly for others. Also, while CoScripter’s personal 
database feature allows users to write scripts that substitute 
user-specified values at runtime, not all processes can be 
generalized using this mechanism. For example, PV1 cop-
ied another person’s script for logging into voicemail in one 
country and modified it to login to voicemail in his country, 
since each country uses a different web application. 

Finally, sharing was further limited when participants’ were 
concerned about revealing private information. Three par-
ticipants created private scripts to protect private informa-
tion they had embedded in the scripts. AC1 said: “There is 
some private information here – my team liaison’s tele-
phone number, things like that. I don’t know, I just felt like 
making it private. It’s not really private, but I just didn’t 
feel like making it public.” Others used the personal data-
base variables to store private information and made their 
scripts public. This privacy mechanism was important to 
them: “Without the personal variables, I would not be able 
to use the product [CoScripter]. I have all this confidential 
information like PIN numbers. It wouldn’t be very wise to 
put them in the scripts.” However, one participant was wary 
of the personal variables, “The issue I have with that is that 
I don’t know where that is stored… If I knew the data was 
encrypted, yeah.” 

Summary 
These findings show that, while not perfect, CoScripter is 
beginning to overcome some of the barriers to sharing pro-
cedural knowledge uncovered in Study 1. First, CoScripter 
provides a single public repository of procedural knowledge 
that our interviewees used (e.g., several participants used 
scripts created by other people). Second, CoScripter elimi-
nates the tedious task of writing instructions (e.g., DG1 
used it to create textual instructions for non-CoScripter us-
ers). Third, CoScripter provides mechanisms to generalize 
instructions to a broad audience so that experts can record 
their knowledge once for use by many learners (e.g., MW1 
generalized his scripts to work for 7000 employees).  

GENERAL ISSUES AND FUTURE WORK 
By helping users automate and share how-to knowledge in 
a company, CoScripter is a good starting point for support-
ing the issues uncovered in Study 1. User feedback, how-
ever, highlights several opportunities for improvement. 
While some of the feedback pointed out usability flaws in 
our particular implementation, a significant number of 
comments addressed more general issues related to PBD-
based knowledge sharing systems. Participants raised two 
issues that highlight general automation challenges – reli-
ability challenges and the need for advanced features – and 
four collaboration issues that will need to be addressed by 

any knowledge sharing system – the sharing model, script 
generalization, privacy, and critical mass. 

One of the most common complaints concerned the need 
for improved reliability and robustness of the system’s 
automation capability. These errors affected both users rely-
ing on the system to automate repetitive tasks, and those 
relying on the system to teach them how to complete infre-
quent tasks. Without correct and consistent execution, users 
fail to gain trust in the system and adoption is limited. 

Users also reported wanting more advanced programming 
language features, such as iteration, conditionals, and 
script debugging help, to properly automate their tasks. 
These requests illustrate a tradeoff between simplicity – 
allowing novice users to learn the system easily – and a 
more complex set of features to support the needs of ad-
vanced users. For example, running a script that has itera-
tions or conditionals might be akin to using a debugger, 
which requires significant programming expertise. A chal-
lenge for CoScripter or any similar system will be to sup-
port the needs of advanced users while enabling simple 
script creation for the broader user base. 

Our studies also raise several collaboration issues that must 
be addressed by any PBD-based knowledge sharing tool: 
the sharing model, privacy, script generalization, and 
critical mass. The wiki-style sharing model was confusing 
to some users. Users should be able to easily tell who can 
see a script and who will be affected by their edits, espe-
cially given the common base of processes being performed 
by many employees. A more understandable sharing model 
could also help address privacy concerns, as would a more 
fine-grained access control mechanism that enabled users to 
share scripts with an explicit list of authorized persons. 
Finer-grained privacy controls might encourage more users 
to share scripts with those who have a business need to 
view them. For generalization, we learned that personal 
database variables were a good start, but we are uncertain 
as to what degree this solution appropriately supports users 
with no familiarity of variables and other programming 
concepts. One way to better support generalization and per-
sonalization could be to enable users to record different 
versions of a script for use in different contexts, and auto-
matically redirect potential users to the version targeted for 
their particular situation. Finally, a small user base limited 
further use of the system. We hope that solving all the is-
sues above will lower the barriers to adoption and improve 
our chances of reaching critical mass. 

Finally, one important area for future work is to study the 
use of CoScripter outside the enterprise. While we con-
ducted the studies in a very large organization with diverse 
employees and we believe their tasks are representative of 
knowledge workers as a whole, the results we have ob-
tained may not be generalized to users of CoScripter out-
side the enterprise. CoScripter was made available to the 
public in August 2007 (see http://services.alphaworks.ibm. 



com/coscripter/), and more research on its use is needed to 
examine automation and sharing practices in this larger 
setting. 

2. Alavi, M., & Leidner, D.E. (2001). Review: Knowledge man-
agement & knowledge management systems: Conceptual 
foundations & research issues. MIS Quarterly, 25(1), 107-137. 

3. Anderson, C. (2006). The long tail: why the future of business 
is selling less of more. New York: Hyperion. CONCLUSIONS 

4. Birnholtz, J.P., & Bietz, M.J. Data at work: supporting sharing 
in science and engineering. Proceedings of GROUP’03. 

Sharing and automation of how-to knowledge is an impor-
tant need, particularly for enterprise workers who interact 
with corporate processes on a daily basis. In this paper, we 
reported on an initial user study that established user needs 
for automating frequent and hard-to-remember processes, 
and for sharing how-to knowledge with others. We pre-
sented CoScripter, a web-based tool for capturing, playing 
back, and sharing scripts to accomplish web-based tasks. 
Based on log data analysis and interviews with active users, 
we found that people have successfully used CoScripter to 
automate frequent and hard-to-remember tasks, and to share 
how-to knowledge with others. Moreover, our analysis re-
veals that a growing number of users are incorporating Co-
Scripter into their work practices. By lowering the barrier to 
automation, CoScripter enables users to save time and ef-
fort capturing and reusing procedural knowledge, and to 
more easily share this knowledge with others. 

5. Brown, J.S., & Duguid, P. (2001). Knowledge and organiza-
tion: a social-practice perspective. Organization Science, 
12(2), 198-213. 

6. Cyper, A. (1993). Watch What I Do: Programming by Demon-
stration. Cambridge: MIT Press. 

7. Dorn, B. and Guzdial, M. Graphic designers who program as 
informal computer science learners. Proceedings of ICER’06. 

8. Edwards, D.L., & Mahling, D.E. Toward knowledge manage-
ment systems in the legal domain. Proceedings of GROUP’97. 

9. Halverson, C.A., Erickson, T., and Ackerman, M.S. Behind 
the helpdesk: evolution of knowledge management system in a 
large organization. Proceedings of CSCW’04. 

10. Hoffmann, M., Loser, K., Walter, T., & Herrmann, T. A de-
sign process for embedding knowledge management in every-
day work. Proceedings of GROUP’99. 

11. Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M., & Kan-
dogan, E. Koala: capture, share, automate, personalize busi-
ness processes on the web. Proceedings of CHI’07.  

Our email survey of lapsed users and interviews of active 
users also revealed several issues that are general to PBD-
based knowledge sharing systems, pointing toward interest-
ing future research. First, we learned that script reliability is 
critical. One future effort will be to achieve better reliability 
while preserving CoScripter’s natural-language representa-
tion, which can be challenging in the ever-changing Web. 
Second, it is important to provide expert users with more 
advanced scripting features while maintaining a simple re-
cording function and scripting language for novice users. 
Our studies also reveal outstanding issues for any tool that 
supports how-to automation and sharing: the sharing model 
needs to be apparent, better mechanisms for generalizing 
scripts are needed, privacy needs to be protected, and criti-
cal mass will need to be reached for knowledge sharing to 
reach its full potential. Future work will involve research, 
design, and development to address these issues and create 
solid automation and sharing tools for a lively community 
both within and outside the enterprise. 

12. Little, G., & Miller, R.C. Translating Keyword Commands 
into Executable Code. Proceedings of UIST’06. 

13. Lochovsky, F.H., Woo, C.C., & Williams, L.J. A micro-
organizational model for supporting knowledge migration. 
Proceedings of SIGOIS’90. 

14. Millen, D.R., & Fontaine, M.A. Improving individual and 
organizational performance through communities of practice. 
Proceedings of GROUP’03. 

15. Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual 
capital, and the organizational advantage. The Academy of 
Management Review, 23(2), 242-266. 

16. Nardi, B.A. (1993). A small matter of programming: perspec-
tives on end-user computing. Cambridge: MIT Press. 

17. Nonaka, I. (1994). A dynamic theory of organizational knowl-
edge creation. Organization Science, 5(1), 14-37. 

18. Nonaka, I., and Takeuchi, H. (1995). The knowledge-creating 
company: how Japanese companies create the dynamics of in-
novation. New York: Oxford University Press. 

19. Rosson, M.B., Ballin, J., & Rode, J. Who, what, and how: A 
survey of informal and professional web developers. Proceed-
ings of VL/HCC’05. 

ACKNOWLEDGMENTS 
We thank the CoScripter development team for their sup-
port and all our interviewees for their time. Thanks to Jer-
emy Birnholtz, Eser Kandogan, Saeko Nomura and our 
anonymous reviewers for their insightful comments on ear-
lier revisions of this paper.  

20. Stewart, T.A. (1997). Intellectual capital: the new wealth of 
organizations. New York: Doubleday / Currency. 

21. Suchman, L. (1983). Office procedure as practical action: 
Models of work and system design. ACM Transactions on Of-
fice Information Systems, 1(4), 320-328. 

22. Szulanski, G. (1996). Exploring internal stickiness: impedi-
ments to the transfer of best practice within the firm. Strategic 
Management Journal, 17, 27-43. 

REFERENCES 
1. Agostini, A., Albolino, S., De Michelis, G., De Paoli, F., and 

Dondi, R. Stimulating knowledge discovery and sharing. Pro-
ceedings of GROUP’03. 23. Yamauchi, Y., Whalen, J., & Bobrow, D.G. Information use of 

service technicians in difficult cases. Proceedings of CHI’03. 

 

 


	ABSTRACT
	ACM Classification Keywords
	Author Keywords

	INTRODUCTION
	RELATED WORK
	User Studies of End-User Programming
	Empirical Studies of Organizational Knowledge Sharing
	Tools for Supporting Automation and Sharing

	INTERVIEW STUDY 1: EXISTING NEEDS
	Participants
	Method
	Results
	What Processes Do Participants Do?
	How Do Participants Share Knowledge?

	Discussion

	COSCRIPTER: COLLABORATIVE SCRIPTING
	STUDY 2: REAL-WORLD USAGE
	Log Analysis: Recorded User Activity
	Script Usage Patterns
	Collaborating over Scripts

	Email Survey of Lapsed Users
	Interview Study 2: CoScripter Usage
	Participants
	Method
	Results
	Automating Frequent or Hard-to-Remember Tasks
	Sharing How-To Knowledge
	Summary


	GENERAL ISSUES AND FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

