
Programming shell scripts by demonstration

Tessa Lau, Lawrence Bergman, Vittorio Castelli,and Daniel Oblinger
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598
tessalau@us.ibm.com

Abstract

Command-line interfaces are heavily used by system admin-
istrators to manage computer systems. Tasks performed at a
command line may often be repetitive, leading to a desire for
automation. However, the critical nature of system adminis-
tration suggests that humans also need to supervise an auto-
mated system’s behavior. This paper presents a programming
by demonstration approach to capturing repetitive command-
line procedures, which is based on a machine learning tech-
nique called version space algebra. The interactive design of
this learning system enables the user to supervise the system’s
training process, as well as allowing the user and system to
alternate control of the learned procedure’s execution.

Introduction
A recent study (Kandogan & Maglio 2003) has shown that
most system administrators perform their management and
troubleshooting tasks via command-line interfaces rather
than using the variety of graphical user interfaces at their
disposal. Command line interfaces (CLIs) have several ad-
vantages for system administration work over graphical in-
terfaces (GUIs). First, they allow tasks to be automated,
which is often necessary when performing the same task
across multiple machines in a cluster, or when human er-
ror while performing a task could lead to costly downtime.
Second, they preserve organizational knowledge about how
to accomplish a task in a human-readable, executable form.
Third, they allow administrators to easily share knowledge
(in the form of copied and pasted shell commands) with their
colleagues via instant messaging and email.

On the other hand, the use of shell scripts to capture pro-
cedural knowledge has its drawbacks. Administrators in the
study said that they reused old scripts, handed down from
previous administrators, without fully understanding what
the scripts did. The cost of authoring a script may be too
high, or require too much programming knowledge. The
time and effort required to diagnose failures of an automated
script may be prohibitive.

This paper proposes a programming by demonstration ap-
proach to the problem of capturing and automating repeti-
tive system administration procedures. A programming by

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

demonstration system learns how to perform a procedure by
observing the user perform the procedure one or more times,
directly in the user interface. Given concrete examples of the
procedure’s execution, the system induces variables, condi-
tionals, and loops in the underlying procedure. It then lets
the user execute the learned procedure in order to repeat the
task directly in the user interface.

We have constructed a system, which we call
SMARTshell, that learns Unix command-line proce-
dures by observing the interactions between a user and a
terminal. SMARTshell is an adaptive system that learns
procedures from human-generated examples, and is capable
of refining its behavior based on feedback from the user
during the playback process. Underlying SMARTshell
is a machine learning algorithm, based on version space
algebra (Lauet al. 2003). We have chosen the machine
learning algorithm carefully to enable the system to respond
to user feedback, and provide a user experience in which
both the user and the system collaborate to achieve the goal.

The next section presents the user interface for our sys-
tem, and illustrates it with an example scenario. The section
that follows describes the learning component of the system.
We then discuss lessons learned, and conclude with some
open questions.

SMARTshell implementation
We illustrate the SMARTshell system on a representative
scenario: testing and restarting a development server. Imag-
ine a developer who is making changes to a server, and needs
to repeatedly verify that his changes have not broken any of
the tests in the test suite. Each time he builds a new server,
he must run the following steps in a console:

• start up the server, and make note of the port number it
chose to start up on

• run the test suite, passing the server’s port number as an
argument

• bring up a process listing to determine the server’s process
id

• send a kill signal to the server using the server’s process
id

The developer can use SMARTshell to quickly construct
a test harness to automate this repetitive task. SMARTshell

Figure 1: SMARTshell recording interface

operates like a macro recorder. Before performing the task,
the developer types “smsh start” into a shell window to bring
up the SMARTshell recording interface (Figure , lower win-
dow). From then on, every command he types into the
shell window (top window in the figure) is recorded by
SMARTshell. He has the option of annotating each step with
human-readable text that explains the command, which will
be displayed when the procedure is later played back.

After he has completed the task, the developer closes the
recording window and SMARTshell saves the procedure for
later reuse. At a future point in time, when the developer has
to perform the same task again, he starts up SMARTshell in
playback mode (Figure). The system indicates that the pro-
cedure is four steps long and that the first step is to start up
the server. When the developer clicks on the “step” button
in the playback interface, the system automatically performs
the command in the console above. The user also has the
option of modifying the command before it is executed; al-
though not yet implemented, the learning algorithm could
use this as feedback that the command it predicted was not
the user’s intended command.

Playback continues on the next steps in the procedure,
running the test suite and bringing up a process listing (Fig-
ure). The kill command in the next step requires as its
first argument the process id of the currently-running server,
which was printed out as a result of theps command. In
this case, SMARTshell guesses that the user wants to run
the command “kill 20068”, using the correct process id, de-
spite the fact that when he had recorded the procedure, the
user had typed “kill 20002”.

In this case, SMARTshell has correctly guessed that the
user wants to extract the process id from the output of the
previous command, and uses that as the argument to the cur-
rent command. The bottom of the playback window shows

Figure 2: SMARTshell playback interface: starting play-
back

SMARTshell’s rather cryptic explanation for selecting these
particular five characters: extract the text range starting ei-
ther at character 58 in the string or at row 2, column 0; and
the range ending either at character 63 or row 2, column
5. All of these hypotheses extract the same text (the string
20068). If there were a different number of lines in the pro-
cess listing, the row-based and the index-based hypotheses
would have produced different guesses. Given the exam-
ples seen thus far, however, the system cannot distinguish
between these hypotheses.

If the user accepts this command, he can continue on
to the next step in the procedure. If for any reason, this
is not the right command, he may either modify it in the
playback interface, or ask SMARTshell to try another guess
by clicking on the “Try another” button in the interface.
SMARTshell maintains a set of candidate hypotheses, and
trying other guesses produces the next most likely hypothe-
ses in that space. Whichever command is accepted, this in-
formation can be used to update the learning algorithm for
future invocations of the procedure.

Once the user is fairly certain that the system has learned
the correct procedure, he can automate the remainder of the
procedure by clicking on the “Run” button in the playback
interface.

Learning shell scripts by demonstration
We have formalized the problem of learning shell scripts
by demonstration as a machine learning problem using ver-
sion space algebra (Lau, Domingos, & Weld 2000; Lauet
al. 2003). Version space algebra is a method for mod-
elling a machine learning problem by decomposing it into
smaller, independently-learnable parts, and combining the
results of the subproblems into an answer for the complete

Figure 3: SMARTshell playback interface: selecting one of
multiple hypotheses

learning problem. It provides many of the desiderata of
a PBD learning algorithm, including: incremental, online
learning; learning efficiently in realtime; explanations for its
inferences; and a user-understandable learning algorithm.

Version space algebra is based on the concept of version
spaces (Mitchell 1982). Each version space can be thought
of as a compact way of representing a set of hypotheses
(drawn from a hypothesis spaceH) that are consistent with
a sequence of observed examples. A hypothesish is consis-
tent with a labelled example(i, o) iff h(i) = o. For a given
sequence of examplesD = (i1, o1), (i2, o2), ...(i|D|, o|D|),
a hypothesish is consistent withD if it is consistent
with each example inD. In other words,C(h, D) ≡∧

(i,o)∈D h(i) = o. Then, a version spaceV SH,D is the
set of hypotheses inH that are each consistent with all of
the examples inD:

V SH,D = {h ∈ H : C(h, D)}
Although version spaces were originally used for binary

classification, we note that the above formulation holds for
any functions that map from an input to an output. In this
case, a hypothesis is a mapping from the domain to the range
of the function space, and the version space consists of func-
tions that correctly produce the output label given the input
label.

Version space algebra consists of a framework for com-
bining simple version spaces into composite ones, through
the three operatorsunion, join, and transform. The union
allows multiple simpler version spaces to be combined into
a single version space that contains the union of their hy-
potheses. The join enables the cross product of two spaces
to form a new space; an example of a join is sequencing two
commands together, where all possible combinations of a

Figure 4: SMARTshell version space. The bowtie symbol
indicates a version space join, while the union symbol indi-
cates a version space union.

first and a second command are considered to be in the joint
space. A transform converts a version space that contains
functions from one domain and range to another domain and
range, and enables the reuse of common components applied
to a new problem. Lau (2003) has complete details on the
version space algebra.

Figure 4 shows the SMARTshell decomposition for learn-
ing shell scripts by demonstration. A trace, consisting of
a sequence of typed commands, is broken down into a se-
quence of commands, and each command is learned inde-
pendently of the others. The top-level hypothesis space,
containing all possible procedures, is the cross product of
the sets of commands in the UnixCommand version spaces
(e.g., one command from the first space, followed by one
command from the second space, and so on). The number
of commands in the procedure is lazily determined after the
first example is observed, and that number is assumed to be
fixed for the life of the procedure. We assume that the user
performs the same steps in the same order for each demon-
station of the repetitive task.

Each unix command is further broken down into the stub
(the first word on the command line, typically a program like
ps or gcc), and the individual arguments. As with com-
mands, the number of arguments is lazily determined when
the first example of this procedure step is observed. Each
argument may either be a constant, a filename, a Unix user
identifier, or some function of the previous command’s out-
put. A filename could either be a literal, constant string, or a
wildcard whose value changes each iteration through a loop

(for example, when touching all the files in a directory in
sequence).

The CommandOutput version space contains hypotheses
that describe different ways to extract information from the
output of the previous command. The information to be ex-
tracted is defined as an extent, or a range of characters span-
ning two locations in the output. The Index version space,
for example, contains hypotheses that describe locations in
the character string based on offset from the beginning of the
string. The RowCol version space describes locations based
on row and column position in the previous command’s out-
put, and can be used (for example) to define a substring that
begins at the start of the third row of output.

The version space diagram in Figure 4 describes the struc-
ture of the version space. We next describe how to update
the structure in response to training examples. With each
new example, the version space is pruned to only contain hy-
potheses that are consistent with the observed example. Ex-
amples are decomposed into sub-components that are used
to train the corresponding version spaces. For example, the
trace of Unix commands is separated into a number of indi-
vidual Unix commands, and each command is used to up-
date the corresponding version space. Each unix command
is parsed into stub and arguments, and the values used to
update the corresponding version spaces. For example, the
stubls must match the stub observed in previous examples
of this step, otherwise the Stub version space collapses (con-
tains no constant-string hypotheses that are consistent with
all training examples). Version space collapse is one indi-
cator that the target procedure does not lie within the bias
expressed in this version space; in future work, we plan to
dynamically extend the bias to consider additional hypothe-
ses in this event.

The CommandOutput version space is updated using the
current command and the output of the previous command.
Each argument in the current command is matched against
the character string representation of the previous com-
mand’s output, and if it matches, then those hypotheses that
explain how to extract that match from the previous com-
mand are retained in the version space. For example, sup-
pose the user entered the commandkill 3777 after ob-
serving this output from aps command:

PID TTY TIME CMD
3770 pts/10 00:00:00 zsh
3777 pts/10 00:00:00 ps

The argument 3777 could be explained by the extent starting
at character 59 and ending at character 63, counting from the
beginning of the string. It can also be explained as the extent
starting from row 3, column 1 and ending at row 3, column
5. Another explanation is that it is the whitespace-delimited
token that occurs three tokens before the tokenps .

These hypotheses are contained within the Index, Row-
Col, and Token version spaces, respectively. (Technically,
there is one Index/RowCol space for the starting location of
the extent, and one each for the ending location of the ex-
tent.) On receipt of a new training example, these version
spaces are updated to contain only those hypotheses con-
sistent with the example. For example, if a subsequentps

listing had more lines of output, it is likely that the index-
based hypotheses would become inconsistent, leaving only
those hypotheses that explain all the observed examples.

In this way, the version space is capable of learning incre-
mentally from multiple examples. A version space trained
on one or more examples can be executed to play back the
same procedure, assuming it hasn’t collapsed due to insuf-
ficient bias. This is done one command at a time. For each
command, the Stub version space must output a string repre-
senting the command stub, such asvi . Each argument ver-
sion space is provided with the output of the previous com-
mand’s execution, and any extraction hypotheses are applied
to that string, in order to produce candidate argument values.
For example, suppose anls command produces the output
string:

total 720
-rw-r--r-- tlau 19:05 aaai.sty
-rw-r--r-- tlau 10:23 discuss.tex
-rw-r--r-- tlau 10:25 introduction.tex
-rw-r--r-- tlau 13:37 learn.tex
-rw-r--r-- tlau 10:24 paper.tex

A hypothesis in the Extent version space might extract
characters 172-182 from this string, and be joined with
the command stub to produce the resulting commandvi
paper.tex . Different hypotheses could select different
extents from the output string, resulting in a choice of hy-
potheses being produced and presented to the user for exe-
cution.

Hypotheses in the version space are given a probability
in order to rank them for the user. Hypotheses in each of
the leaf-node version spaces are given a probability distri-
bution, such that the probabilities of all the hypotheses in
a leaf-node version space sum to one. Each version space
in a union is given a weight; when combining hypotheses
from the members of the union, they are weighted by the
space from which they were drawn. The probability of a hy-
pothesis in a join is the product of the probabilities of the
hypotheses contributing to the joint hypothesis. In this way,
the probability of each hypothesis in the complete version
space can be determined.

Discussion
Our experience with the SMARTshell system has led us
to formulate several desiderata for machine learning algo-
rithms that incorporate human input and enable the user to
take control at specific points during the execution of the
learned process. One of the largest barriers to the adoption
of automated systems for system administrators is trust that
the system will do the right thing in the right situation. Our
desiderata thus reflect the need to establish trust between the
human operator and the adaptive system. Specifically, we
believe that:

• The system must be able to learn incrementally as users
provide examples;

• Learning must happen in real-time, so that the results are
immediately accessible to the user;

• The system must be able to explain its inferences, such
as a user-understandable representation of the proposed
hypothesis; and

• The user should be able to understand the the learning
algorithm at a high level.

• The user and the system ought to be able to take turns
performing steps in the procedure.

These desiderata will certainly inform our future work
in the area of automating tasks through programming by
demonstration, and may apply to other areas where super-
visory control of machine learning systems is required.

Conclusions and open questions
In summary, we have described an approach to learning shell
scripts by demonstration. We have cast the problem as a
machine learning problem and formalized it using the ver-
sion space algebra framework. Our SMARTshell system
provides an interface for users to interact with the system
to demonstrate new examples, refine the current hypothesis,
and execute the procedure either automatically or under the
user’s control.

Many open questions remain, such as:

• How do we evaluate the effectiveness of a supervised
adaptive system?One obvious metric for programming
by demonstration systems is to evaluate how long it takes
humans to complete a task both with and without help
from the system. Are there any other metrics that could
be used? How do we quantify the benefit of a supervised
system, compared to a fully-automated system?

• How should users interact with AI systems? In this
work we focused on example-based communication be-
tween human and system, but others have considered
declarative policy-based interaction. What other possi-
bilites exist, and what are the benefits and drawbacks of
each one?

• How do we establish trust between the human and the
system? Trust goes both ways. The user needs to trust
that the automated system is controlling the process ade-
quately; supervisory control may be a means for increas-
ing trust by enabling the user to oversee the system’s per-
formance. However, in learning and adaptive systems, the
system needs a certain amount of “trust” that the human
is acting correctly and rationally. Can learning systems
detect and recover from human fallibility?

• How do we combine incremental, supervised learning
with distributed, collaborative learning across many
experts?People often learn from each other. An adaptive
system may be able to increase its knowledge by learning
from multiple experts and combining their results together
to form a single model that exploits the best knowledge
from each of the experts. How do we retain the benefits
of an fast, incremental approach and extend the learning
algorithm to incorporate data collected asynchronously
from other humans’ experience?

References
Kandogan, E., and Maglio, P. P. 2003. Why don’t you
trust me anymore? Or the role of trust in troubleshooting
activities of system administrators. InCHI 2003 Workshop:
System Administrators are Users, Too.
Lau, T.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by demonstration using version space
algebra.Machine Learning53(1-2):111–156.
Lau, T.; Domingos, P.; and Weld, D. S. 2000. Version space
algebra and its application to programming by demonstra-
tion. In Proceedings of the Seventeenth International Con-
ference on Machine Learning, 527–534.
Mitchell, T. 1982. Generalization as search.Artificial
Intelligence18:203–226.

