

An Ethnographic Study of Copy and Paste Programming Practices in OOPL

Miryung Kim1 Lawrence Bergman2 Tessa Lau2 David Notkin1

Department of Computer Science &
Engineering

University of Washington1
{miryung, notkin}@cs.washington.edu

IBM T. J. Watson Research Center2
{bergmanl, tessalau}@us.ibm.com

Abstract

Although programmers frequently copy and paste

code when they develop software, implications of
common copy and paste (C&P) usage patterns have
not been studied previously. We have conducted an
ethnographic study in order to understand
programmers' C&P programming practices and
discover opportunities to assist common C&P usage
patterns. We observed programmers using an
instrumented Eclipse IDE and then analyzed why and
how they use C&P operations. Based on our analysis,
we constructed a taxonomy of C&P usage patterns.

This paper presents our taxonomy of C&P usage
patterns and discusses our insights with examples
drawn from our observations. From our insights, we
propose a set of tools that both can reduce software
maintenance problems incurred by C&P and can
better support the intents of commonly used C&P
scenarios.

1. Introduction

Programmers often copy and paste code from

various locations: documentation, someone else's code,
or their own code. However, the use of copy and paste
(C&P) as a programming practice has bad connotations
because this practice has the potential to create
unnecessary duplicates in a code base. Researchers
have recommended that programmers should avoid
creating code duplicates �[7]�[9] – which are often
created by C&P – because such duplicates can be
difficult to maintain. For example, a bug can be
propagated to scattered places when the code is copied.
The software engineering community has made a
significant effort to tackle the problem of code
duplication. A number of clone detection tools have
been developed to help programmers automatically

locate code duplicates and refactor existing
duplications to a unit of programming language
abstraction �[1]�[2]�[3]�[6]�[12]�[14]�[15]. However, in
practice, a substantial amount of duplicated code is still
present in many software systems �[6]�[12]. Our
understanding of how and why code clones are created
is very limited.

Earlier studies have formed a few informal
hypotheses about how C&P is performed by
programmers to reuse code �[17]�[18]. However, existing
work has not focused specifically on solving the
possible problems that can be incurred by C&P during
software evolution.

The main purpose of our work is to investigate
common C&P usage patterns and associated
implications as a first step toward understanding and
solving such problems. We believe that understanding
when and how C&P is used will also reveal limitations
in programming language designs and the lack of
software engineering tool support to cope with
common usage patterns.

In our investigation we have conducted an
ethnographic study by observing programmers’ C&P
behavior. We developed a logger that records editing
operations, enabling us to observe programmers in a
non-intrusive manner. In addition, we built a replayer
that can play back the editing logs captured by the
logger. Then we analyzed how and why C&P
operations were used and created a taxonomy of C&P
usage patterns based on our analysis.

We have identified a number of interesting findings
about common C&P patterns. Not only does C&P save
typing, it also captures important design decisions
made by programmers. Dependencies created by C&P
are useful for program understanding. In fact,
programmers employ their memory of C&P history as
they make changes to code or decide when to
restructure code. However, a programmer’s
recollection of C&P history can be short-lived,

somewhat inaccurate, and difficult to transfer from
person to person. The lack of tool support for recording
and using C&P editing information may cause
problems during software evolution. Specifically we
have made the following observations:

• Limitations of programming language designs
may result in unavoidable duplicates in a code base.

• Programmers often delay code restructuring
until they have copied and pasted several times.

• C&P dependencies often reflect important
underlying design decisions, such as aspects or
crosscutting concerns.

• Copied text is often reused as a template and is
customized in the pasted context. Current software
engineering tools have poor support for identifying
reusable code templates or maintaining them during
software evolution.

Based on our insights about C&P usage patterns, we
propose tools to reduce software maintenance problems
caused by C&P and that would allow programmers'
intent to be expressed in a safe and efficient manner.

The rest of the paper is organized as follows.
Section 2 presents the ethnographic study that we
conducted. Sections 3-5 describe our taxonomy of
C&P patterns that we observed from three different
perspectives. Section 6 summarizes our insights. In
Section 7, we propose tools based on our insights. In
Section 8, we discuss possible threats to the validity of
our study results and share our conjecture about C&P
patterns in different study settings. Section 9 discusses
related work and Section 10 summarizes our
contributions.

2. Ethnographic Study

We conducted a study to observe programmers

performing coding tasks either by watching them
directly or by having them use an instrumented editor
that logs their editing operations. In the latter case, we
conducted follow-up interviews to understand
programmers’ tasks at a high level and to confirm our
interpretation of their actions. Using the collected data,
we built a taxonomy of C&P operations.

In Section 2.1 we present the two different methods
of observations and discuss their pros and cons. In
Section 2.2, we describe the functionality of the logger
and the replayer that we developed. Section 2.3
describes our method for analyzing C&P operations.

Section 2.4 presents some statistics about C&P
behaviors that we observed.

2.1. Observation

Our study involves two types of observations. First,

we watched programmers over the shoulder as they
write programs, and we took notes during the
observation. In general, it was extremely difficult to
manually log editing operations performed by the
subjects; we could not identify the exact code
fragments that were copied and pasted. Therefore, we
interrupted the subjects' programming flow and asked
them to explain what and why they were copying and
pasting. Because the subjects were aware that we were
analyzing the intention of each C&P operation, they did
not copy and paste unless they thought they had a valid
reason. Our presence in the room also seemed to put
pressure on the subjects to write code continuously,
which was not natural for them. One advantage of
direct observation, however, was that it was easier for
us to identify the intention of copying and pasting
because most participants voluntarily and clearly
explained their intentions.

In order to enable subjects to write programs in a
more natural setting and to log editing operations with
greater precision, we used a logger and a replayer
(described in the next section). Using the logger, we
recorded coding sessions and then observed the
participants’ actions off-line by replaying the captured
editing operations.

For both types of observation, the subjects were
researchers at IBM T. J. Watson Research Center.
They were expert programmers in Java and were
involved in small team research projects. In total, nine
subjects participated in our study, and we observed
about 60 hours of coding in object-oriented
programming languages, mainly in Java. Observational
study settings are summarized in Table 1.

Table 1. Observational study setting

 Direct
Observation

Observation
using a logger
and a replayer.

Subjects Researchers at IBM T. J. Watson
Number of
Subjects

4 5

Total Coding
Hours

About 10 hrs About 50 hrs.

Interviews Questions
asked during
observation

Twice after
analysis
(30 mins ~1
hour/each)

Programming
Languages

Java, C++, and
Jython

Java

2.2. Logger and Replayer

The logger efficiently records the minimal

information required to reconstruct document changes
performed by a programmer. We developed the logger
by extending the text editor of the Eclipse IDE �[5] and
instrumenting text editing operations. It records the
initial contents of all documents opened in the
workbench and logs changes in the documents. It
records the type of editing operations, the file names of
edited documents, the range of selected text, and the
length and offset of text entries, as well as editing
operations such as copy, cut, paste, delete, undo, and
redo. It also captures document changes triggered by
other automated operations such as refactoring and
organizing import statements.

The replayer plays back the changes made to the
document using the low level editing events captured
by the logger. It displays documents and highlights
document changes and selected text. It has a few
controls such as play, stop, and jump. Whereas
videotape analysis of coding behavior normally takes
10 times as long as the actual coding,1 we only spent
0.5 to 1 times as long as the actual coding to analyze
the data by using the instrumented text editor and the
replayer.

2.3. Analysis

By replaying the editing logs, we documented

individual instances of C&P operations. An instance
consists of one copy (or cut) operation followed by one
or more paste operations of the copied (or cut) text. It
also includes modifications performed on the original
text or the cloned text. We categorized each instance
with a focus on the procedural steps and the syntactic
units of copied (or cut) content, such as types,
identifiers, blocks, and methods.

Since we observed multiple C&P instances that
share similar editing steps, we generalized the editing
procedures to identify C&P usage patterns. For
example, one frequent C&P pattern was to change the
name of a variable repeatedly. The renaming procedure
consists of selecting a variable, copying the variable,
optionally searching for the variable n times, and
pasting the variable n times (where n is the number of
appearances of the variable within its scope).

For each generalized C&P procedure, we inferred
the associated programmer’s intention. Inferring a
programmer’s intention was often straightforward. For
example, “changing the name of a variable

1
 Personal communication with J. Karat, a user study expert.

consistently” is the intention associated with the
renaming pattern described earlier.

For each C&P instance, we also noted the
relationship between a copied code snippet and code
elsewhere in the code base. In addition, we analyzed
the evolutionary aspect of C&P instances by observing
how duplicated code fragments were maintained and
changed during our study.

After producing detailed notes for each C&P
instance, we met with subjects to confirm our
interpretation of their C&P tasks. Then we built a
taxonomy of C&P operations by grouping related C&P
instances together and hypothesizing C&P usage
patterns from the grouped notes using an affinity
process �[4]. In total, 460 C&P instances were analyzed.

2.4. Statistics

In this section, we present simple statistics about
C&P usage patterns that we observed. With the
instrumented editor, we observed 460 C&P instances.
We measured the frequency of C&P instances for each
observation session (i.e. the number of C&P instances
per hour). The average number of C&P instances per
hour is 16 instances per hour and the median is 12
instances per hour.

In order to understand how often C&P operations of
different size occurred, we grouped C&P instances into
four different syntactical units and counted them
(Figure 1). About 74% of C&P instances fall into the
category of copying text less than a single line such as
a variable name, a type name or a method name. In
these cases, we believe that copying was performed to
save typing. However, about 25% of C&P instances
involved copying and pasting a block or a method. We
believe that copying in this category often creates
structural clones and reflects design decisions in a
program. When we multiply this percentage (25%) by
the average 16 instances per hour, it means that a
programmer produces four non-trivial C&P
dependencies per hour on average.

0

50

100

150

200

250

300

350

400

74.13% 16.74% 8.04% 1.09%

type/var/method
name

block method class

Entity

C
o
u

n
t

Figure 1. Distribution of C&P instances by different
syntactic units

The following three sections present the resulting

taxonomy, focusing respectively on the intentional,
design, and evolutionary perspectives on C&P
operations. Section 3 (Intention view) describes the
categorization of programmers’ intentions involved in
C&P operations. Section 4 (Design view) describes the
categorization of design decisions that induce
programmers to copy and paste in particular patterns.
In Section 5 (Maintenance view) we discuss
maintenance tasks associated with C&P operations.

3. Intention View

We constructed the categorization of programmers'

intentions by inferring intentions associated with
common C&P patterns and by directly asking questions
of the subjects.

One use of C&P is to relocate, regroup, or
reorganize code from one place to another according
to the programmers’ mental model of the program’s
structure. Programmers also use C&P to reorder code
fragments. For example, a Boolean expression (A||B||C)
could be reordered as the equivalent expression
(B||C||A) to improve performance, or several if-blocks
could be reordered so that negated if-statements return
earlier. Programmers also use C&P to restructure (or
refactor) their code manually.

The most common C&P intention in our study was
to use a copied code snippet as a structural template
for another code snippet. Programmers often copied the
entire code snippet and removed code that was
irrelevant to the pasted context. The structural
templates can be either reusable syntactic elements of
code snippets (syntactic templates) or reusable
programming logic (semantic templates).

Figure 2 shows an example of a syntactic template.
The statement pr ot ect edCl asses. add(" j ava.

l ang. Obj ect ") was copied multiple times. The
duplicates were modified after they were pasted. We
deduced that the programmer intended to reuse
pr ot ect edXXX. add(" j ava. l ang. YYY") as a
template for other statements in the static method
initialization. We conjecture that the lack of
functionality in today's IDE and (/or) limitations in
language constructs increase the need for copying
syntactic templates. For example, the absence of
repetitive text editing support in an IDE or the lack of
the “ enum” construct in Java causes programmers to
copy and paste a particular phrase frequently.

��������

��		

������������

��
�	
������
����������������������	�������	���������	�
���������	����
�	
������
����������������������	�������	��������
�	
���������
������������������! 	�������! 	���"	

#�����

$�

Figure 2. Example of a syntactic template

In this paper, copied text is represented as copied
text (with dotted underline), pasted text is represented
as pasted text (italic), deleted text is represented as
deleted text (with double strikethrough), and cut text is
represented as cut text (with single strikethrough).
Modifications performed on top of pasted text are
represented as modified text (with solid underline).

The other category of structural template reuse is

semantic templates. The following four paragraphs
categorize the use of semantic templates.

Design Pattern

In our study, one programmer told us explicitly that
what he copied was the instantiation of the Strategy
pattern �[8]. We suspect that the programmer used a
concrete instantiation of the Strategy pattern as a
template because it was easier than writing code from
an abstract description of that design pattern.
Usage of a Module (Class)

Programmers often copy a code snippet to reuse the
usage protocol of a target module �[19]. We observed
many cases where a code snippet was copied because it
contained logic for accessing a frequently used data
structure. In Java, programmers are required to know
the usage protocol for library data structures that they
intend to use. For example, in order to traverse keys in
a Hasht abl e, a programmer needs to get a reference
for a key set by invoking the keySet () method on the
hashtable object and then obtain an iterator for the key
set. We observed a number of similar cases in our
study. One example is shown in Figure 3. The code
snippet was copied because it contains frequently used
code for traversing over El ement nodes in a DOM
Document in C++.
Implementation of a Module

Programmers may copy a code snippet because it
contains a definition of particular behavior that they
want to reuse. For example, a programmer copies the
signature and partial implementation of a module when
they intend to reuse part of the module’s behavior.
Although inheriting abstract classes or interfaces can be
an alternative for this case, in our study, programmers
sometimes did not choose this alternative.

%��&
��'����(� ���	���)��
�*+���
 ���&
�������
�����#,
 ���	���)�� ���	��*+���'���� �����
� �
�
	�������)-���.�#,
 ���	����//���
������
��������%��&
���(� ����)��� ���	��*+���,������
������������� ���*+���&
��!0�����))��
����������%��&
���1'1�1&!2&�%1��
����������
������������%��1��,����(���,����)��%��1��,���(�� �����

Figure 3. Semantic template: traversing over
element nodes in a DOM document in C++

Control Structure
Programmers frequently reuse complicated control

structures, such as a nested i f t hen el se or a loop
construct. When programmers intend to write code that
has the same control structure but different operations
inside the control structure, they tend to copy the code
with the outer control structure and modify its inner
logic. For example, in Figure 4 a programmer copied a
loop construct and modified the inner logic after
pasting.

33

		����44����		����

		������)),,����������������������		����

		������������ ����&&��55����������������

������������������##))��������������������������������55����������

4433��������,,��		6633������))����

77

		66����������88����������������33����������##				��������33��		����''

��������

��������������

����

����&&��,,������������

999999$$��
�
	��4��	��
	���),�����������	��
	������ ��&�5��������

���������#)����������������5�����
�������'
����
���
��)��#		����'���'
����
�����
43����,�	63���)��
7
	6�����8��������3�����
��getFirstLocation().���
��
��&�,������

99��$�

Figure 4. Semantic template: Copying a loop
construct and modifying the inner logic

4. Design View

The Aspect Oriented Programming community has

observed that primary design decisions that are already
embedded in a system sometimes do not allow
secondary design decisions to be modularized in a
small module when they are added to the system
�[13]�[19]. We believe that the lack of modularity leads
programmers to insert similar code snippets across a
code base, which is often done through copying and
pasting.

We examined underlying design decisions that
induce programmers to copy and paste in particular
patterns. Unlike the intention view, where we analyzed
code snippets involved in each C&P instance in
isolation, in the design view, we analyzed the code
snippets in relation to other code snippets in the
system. We raised several questions to understand the
architectural (or design) context of C&P operations.
Each of the following three sub-sections discusses why
we chose each question and describes the
categorization of answers to the question.

4.1. Why is text copied and pasted repeatedly
in multiple places?

We observed that particular code snippets may be

copied and pasted repeatedly in scattered places. We
raised this question to understand why programmers
chose to duplicate a code snippet rather than to refactor
it.

Our answer to this question is that some concerns
are difficult to separate from the execution context
because these concerns require accessing the execution
context �[19]. For example, the code of a logging
concern in Figure 5 was copied and pasted four times
within one file and many more times across the code
base. Because it is difficult to generalize the list of
arguments for the factored logging function, refactoring
this code snippet is often less preferable than copying
the code snippet. In addition, even if the programmer
chooses to refactor it, the dependencies between the
logging module and the other modules would remain
entangled.

�����
�:�����	���
������
� �	0���
� � ;	���7	���	�<�)�����#��#�����
� � <�<	����������=���
���
� $����� ��4�15�����
�������
� $�

Figure 5. Duplicated code: logging concern

For the same reason, adding a software feature
sometimes requires making changes in scattered places
across a code base. In one project that we observed, a
programmer added a feature to display a user-friendly
type for internal objects instead of the internally used
XML type for the objects in his code. First, he wrote
the body of get Fr i endl yTypeName() and duplicated
it in four different classes. When he realized that it was
better to refactor the code as a separate method, he
copied the body of get Fr i endl yTypeName() and
pasted it into the Mi scOps class. Then he copied and

pasted the invocation statement of Mi scOps

. get Fr i endl yTypeName() four times to call the
refactored method.

We suspect that when the secondary design decision
such as the logging concern needs to compromise its
modularity with the primary design decision,
programmers are required to duplicate some code
because the dependencies between primary modules
and secondary modules would still exist.

4.2. Why are blocks of text copied together?

We observed that when a code snippet is copied

from A and pasted to B, related code snippets are also
copied from A and pasted to B. We believe that code
snippets are often copied together because they belong
to the same functionality or concern. Some examples of
code snippets that are copied together are described as
follows:
Comments

A comment is copied when its related code is
copied.
Referenced Fields/Constants

Programmers copy referenced fields and constants
when they copy a method that refers to them.
Caller Method and Callee Method

Programmers copy a referenced method when they
copy a method or a class that invokes the method.
Similarly, a caller method is copied when its called
method (callee) is copied. In one case that we
observed, a programmer copied the contents of the
sender . cpp file to hear t beat . cpp in order to
create a hear t beat thread that has similar behavior
to the sender thread. After he finished modifying
hear t beat . cpp, he copied the invocation statement
of st ar t _sender () and pasted it as the invocation
statement of st ar t _hear t beat () in the test driver
file. He also copied the invocation of
shut down_sender () and pasted it as the invocation
of shut down_hear t beat () .
Paired Operations

Programmers copy and paste paired operations
together. For example, when a programmer copies
wr i t eToFi l e(), he also copies openFi l e() and
cl oseFi l e(). Likewise, when ent er Cr i t i cal

Sect i on() is copied, l eaveCr i t i cal Sect i on() is
copied as well.

4.3. What is the relationship between copied
and pasted text?

We raise this question to understand why

programmers choose a code fragment as a template. In

other words, we are interested in understanding the
relationship of the copied text and the pasted text.

��##������������

������##����������33		

,,������

������������������������

>>��		����������!!00������))��

88��������,,��66��!!00����������������&&��,,������������

������������������

����������������

����������������!!00��������������

		����##		������

$$��

����������

������������������������!!00����������

�������� ����		��		�� 00��??))����##������������

������!!

������		��		�� 00@@��������������������

������������

$$��

��������,,����

������??))����##������������

��������

��AABB��,,����))������������%%��������		����������

������������

����

		����������������))��--��������..��,,�������������� ������////��������

��������

����,,��))��,,��AA��BB����

,,����

������������������

������!!00����CC����

,,��������&&��,,������CC��

88����������

,,��##����>>����������##		����

����,,��������;;��		��,,������		!!00����������CC��

,,��������������##		��!!00����������CC��

,,����������

����������		������������

 }
 }
$$��

Figure 6. Populating the same data structure:
updateFrom(Class c)

�#������
���#�����3	
,���
���������	��	������
>�	�����!0���)�

!%��
��	��
���	�
����!
!0��
(c.getName());
��������
��������
��������!0�������

�	��#	���
�$�
����
������������!0�����
���� ��	�	� 0�?)��#������

!8��������
����!
���	�	� 0� ��	�	� 0C�
�	���

$�
����,��
���?)��#������
�����
#���)��	�������
�

#�������
�
	������4�)�-����.��
#�����//����

���
��,�)�,�A�B��
,��
���������
���!0��C��
�	�������
�&�,����C�
�	�������
�!0�����C��
�	�������
�:�����3�����������

$�
$�

Figure 7. Populating the same data structure:
updateFrom (ClassReader cr)

Similar Operations but Different Data Sources
This category is a special case of semantic templates

where the duplicated code snippets manipulate
different data sources. In one application that we
observed, error messages were sent from one stage to
the next stage by calling method A. The same error
messages are also sent to a user by invoking method B.
A is copied and used as a template for B because A and
B contain logic for reading the same header, only
differing in the targets to which they direct error
messages.

As another example, in Figures 6 and 7, the
updat eFr om (Cl ass c) method is used as a
template for the updat eFr om (Cl assReader cr) .
Both methods contain logic for populating the same
data structure. While one method reads from a class
object that is obtained through Java reflection, the
other reads from Java byte code.
Semantically Parallel Concerns

We define semantically parallel concerns as design
decisions that crosscut a system in a similar way. For
example, we say that supporting an integer operation
and supporting a floating point operation in a compiler
are semantically parallel concerns because they
crosscut each component of a compiler's pipeline
architecture in a similar way. We observed one project
that involves extending a compiler to support XML
DOM objects. At the time of the observation, the
compiler already had code related to the ser i al i ze
concern and the subject wanted to insert code related to
the appendChi l dr en concern. The programmer
identified all the code related to the ser i al i ze
concern by exploiting the fact that information
transparent modules �[10] are often encoded with the
same signature, such as the use of particular variables,
data structures, or language features. The programmer
then copied the identified code snippets and modified
them as necessary for the appendChi l dr en concern.
When we asked the programmer why he programmed
in such way, he answered that those concerns crosscut
the same places in the compiler architecture and it
helped him to keep track of which part of the system to
extend. A similar case was observed in �[10] when the
C-Star was retargeted to Ada. The pipeline architecture
of C-Star guided the programmer to identify all the
code related to C syntax specific support and convert it
to Ada syntax specific support.
Paired Operations

In Section 4.2, we mentioned that paired operations
are copied together frequently. But in this section we
discuss paired operations as a special case of sharing
the usage of the same data structure (discussed in
Section 3).

��##������������

������������������

��������������

DDDD��		����		��������������,,������

��������,,������))))����##������������

DDDD����		��������������,,��������

$$��

DDDD����������������������		00��

����

��������

��))))����##������������

DDDD������������ ������,,����

����������

������,,��������������		����##		����

$$��

��������

������������������

����::				��00''��������������

DDDD������������

$$����������������

DDDD����		������������������				��00������������������������������������

������,,������

$$��

DDDD��������������,,����

������

���� ������				��00������������
$�
�
�#��������
�4��
����
�������
������

DD�	��	�����,���
����,���))��#������

DD�	��#	���#����
$�
DD�����������	0�
�
����
�))��#������

DD�	��#	���#���
$�
����
���������
��:		�0'�������

DD��	���	������ �,��
���,������ ���		�0�����C�
�������,��� ��C�	��#	���,��

$��������
DD����������#	��,��� ��C�	��#	��� ���,��
��

$�

Figure 8. Paired operations: write / read logic

For example, in Figure 8 the addMet hod() method
is copied and used as a template for the
get Cl assMet hod() method because the addMet hod()
and the get Cl assMet hod() access a hashmap where
each value of (key,value) pairs can be either a single
object or an array list of multiple objects.
get Cl assMet hod() contains read logic that pairs with
write logic in addMet hod().
Inheritance

We observed several cases where a programmer
copied a superclass and used as a template for
subclasses and copied a sibling class as a template for
other sibling classes.

To summarize, in the design view, we examined

various kinds of C&P dependencies, such as the
relationship between a copied code snippet and a
pasted code snippet, the relationship of code snippets
that are copied together, and the relationship of code
snippets that are duplicated repeatedly. Based on our
analysis, we conclude that observing and maintaining

WRITE

READ

C&P dependencies is worthwhile because these
dependencies reflect important design decisions, such
as crosscutting concerns, feature extensions, paired
operations, semantically parallel concerns, and type
dependencies (inheritance).

5. Maintenance View

We investigated maintenance tasks for duplicated

code because failing to perform such tasks may lead to
software defects. Although this ethnographic study was
not a longitudinal study, we addressed maintenance
problems associated with C&P by examining what
programmers did immediately after a C&P operation
and how programmers modified code duplicates
created by C&P.

Short Term Maintenance Tasks

We noticed that cautious programmers modify the
portion of pasted code that is specific to the intended
use immediately after they copy and paste. For
example, they modify the name of a variable to prevent
identifier naming conflicts or remove the portion of the
pasted code that is not part of the structural template.
Long Term Maintenance Tasks

Programmers restructure (or refactor) their code
after frequent C&P of large texts. For example, after
one code snippet is copied and pasted multiple times,
the code snippet may be refactored as a separate
method. Another example is that after frequently
defining an anonymous class and instantiating objects
of the class on the fly, a programmer might define an
inner class and create a member variable that holds the
object.

By observing how programmers handle code
duplicates created by C&P, we noted that programmers
tend to apply consistent changes to code from the same
origin. In other words, after they create structural
clones, they modify the structural template embedded
in the clones consistently when the template evolves.
This observation is symmetric to the information
transparency principle �[10] that code elements that
change together must look similar.

6. Insights

In this section, we summarize our insights about

C&P.
• Limitations of particular programming

languages produce unavoidable duplicates in a
code base.

For example, the lack of multiple inheritance in Java
makes it difficult to impose a particular behavior or an

aspect without creating duplicates. As another example,
the lack of the "enum" construct in Java makes
programmers copy the phrase " publ i c st at i c

f i nal St r i ng" frequently.
In some cases programmers do not remove code

duplicates even if it is possible to refactor them,
because the organization of the code does not match
the programmers’ conceptual organization of the code.
• Programmers use their memory of C&P history

to determine when to restructure code.

A few programmers told us that they deliberately
delay code restructuring on purpose until they copy and
paste several times because such reuse helps them
discover the right level of abstraction. We suspect that
larger or frequently copied code fragments are good
candidates for refactoring.
• C&P dependencies are worth observing and

maintaining.

The examples in Section 4 demonstrate that C&P
dependencies reflect design decisions such as aspects,
parallel cross-cutting concerns, paired operations and
so on. We believe that C&P dependencies are worth
preserving because they can supplement the static
understanding of a code base that can be extracted from
the code itself.

Figure 9. Example of a bug propagation: Mozilla
bug id 217604

In addition, programmers rely on their memory of
C&P dependencies when they apply consistent changes
to duplicated code. If programmers forget where
structural clones are located and what the template of a
set of structural clones is, then they may produce
defects when making changes to the software. We
found a motivating example from the Mozilla open
source project. One bug in Mozilla required a
programmer to fix bugs that had been propagated to 12
different places by C&P. A bug was introduced to the
code snippet in Figure 9 by invoking the
appendFr ames() method instead of the i nser t

Fr ames() method. The code snippet was copied

twice within the same method and the method itself
was copied three times. Ultimately, 12 structural clones
containing that faulty code snippet were produced. The
programmer who fixed the bug had to lexically search
the code base for comments starting with "XXX" in
order to apply the appropriate modifications
consistently. If “XXX” had not existed in the copied
comment, or if the signature of the structural template
had evolved very differently in individual code
fragments, then lexical search may not have been
adequate to locate the faulty code snippets.
• Programmers copy an entire code snippet

because it contains the structural template that
they intend to reuse.
Thus we conclude that it is desirable to provide

software development environments that learn
structural code templates and support reuse of the
learned templates. We also believe that identifying
frequently used structural templates will provide input
for better programming language design.

7. Proposed Tools

Based on our insights from our study results, we

propose tools that can minimize the software
maintenance problems that may be incurred by C&P, as
well as support common C&P programming practices.

Visualization

We propose a tool that visualizes copied and pasted
contents and explicitly maintains and represents the
C&P dependencies. We believe that this tool can
increase traceability of a code snippet when
programmers intend to apply the same change to the
duplicates of the code snippet. Programmers can also
communicate the intention behind the duplication to
other programmers by annotating the duplicated code
snippets with their intention.
Extraction of Structural Templates

We propose a tool that learns the relevant structural
template of a code snippet by observing repetitive
duplication of the code snippet followed by
modifications to it. When a programmer intends to
duplicate this structural template via C&P, the tool can
provide advanced sentence (or block) completion and
assist in removing the code that is irrelevant to the
pasted context.
Warning / Notification

From the examples of semantic templates in Section
3, we conjecture that structural templates may indicate
protocols or agreements on the usage of a module.
Using the two proceeding proposed tools, we could
warn programmers when they attempt to change a

structural template of code fragments. We could also
notify other programmers or propagate changes to
other uses of the structural template automatically when
there is a change in the structural template. This tool
could prevent inconsistent changes in a code base.
Refactoring recommendations

Although the Eclipse IDE provides a number of
automatic restructuring mechanisms, Eclipse IDE does
not suggest where to restructure or which refactoring
mechanism to use. We believe that by identifying a
structural template of copied code snippets and by
monitoring the frequency and size of copied text, we
could automatically suggest when and how to
restructure the copied text.

8. Threats to Validity

The scope of our study is confined to C&P
programming practices in object oriented programming
languages (OOPL). Thus some results that involve
OOPL-specific features may not apply to other
programming languages. For example, programmers
who use functional programming languages may not
need to copy a code snippet that contains a complicated
control structure because higher order functions in the
language allow such control structure to be passed as
parameters. However, we believe that OOPLs are
widely used and our study results provide valuable
insights for the design of software engineering tools for
them.

Participants in our study were researchers at the
IBM T. J. Watson Research Center. They were expert
programmers in Java and were involved in small team
research projects. Our results may not be applicable to
larger projects or projects that involve programmers
with different levels of expertise in programming. We
conjecture that novice programmers may copy and
paste to learn the syntax of programming languages or
employ less of their knowledge about C&P history
when they maintain software.

9. Related Work

Various types of clone detectors have been

developed to cope with the problem of maintaining
code duplicates during software evolution �[1]�[2]�[3]�[6]
�[12]�[14]�[15]. In addition, these clone detection tools
have found a large proportion of cloned code in
popular software systems. However, these research
projects did not address how code clones are entered
into a system or why programmers duplicate code.

In order to understand code reuse strategies in
object oriented programming, Lange et al. �[17]

conducted a week long observation of a single subject
writing programs in Objective-C. The investigators
observed that the subject often copied a super-class or
a sibling-class as a template for a new class and then
edited the copied class. Rosson et al. �[18] observed
four subjects programming in Smalltalk. In her study,
she observed that when the subjects were interested in
reusing a particular target class, they copied the usage
protocol of the target class and used it as an example
code snippet without deeply comprehending the
behavior of the target class. Although they considered
C&P as one strategy of source code reuse, they did not
focus on the implications of C&P. In our study, we not
only observed the same code reuse behavior, but also
analyzed why programmers chose specific code
snippets as templates.

Lagüe et al. �[16] studied the evolution of code
clones in six versions of a large telecommunications
system. They found that the overall number of clones in
the system grew even though a significant number of
clones were removed from the system. They also found
that only half of clones in each version were modified
in the same way in the next version. Their argument
supports the benefits of our proposed tools.

Data collection via logging has been used to observe
programming practices in the software engineering
community. For example, Thomas et al. collected
students’ programming data by capturing keystroke,
mouse, and window focus events generated by the
Windows OS �[11]. In our study, we efficiently logged
and analyzed large quantities of coding data using our
logger and replayer. We envision that our tools will
serve as a basis for an infrastructure that captures
editing history and provides an API to software
engineering applications that employ editing process
information.

10. Conclusion

Common wisdom dictates that good programmers

do not use C&P operations because they tend to
produce maintenance problems. Our ethnographic
study has shown that programmers nevertheless use
C&P very frequently, producing up to four
architecturally significant C&P instances per hour.
Rather than viewing this as a drawback, we instead take
this as an opportunity to identify and develop software
engineering tool support for existing practices.
Specifically we discovered that C&P editing
information is useful for program understanding and
that programmers actively make use of the history of
C&P operations as they make changes to software or
decide when to restructure code. We have identified

software maintenance problems that may be induced by
common C&P usage patterns and proposed a set of
tools to solve such problems.

11. References

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and L.
Kontogiannis, “Advanced Code Analysis to Support Object-
Oriented System Refactoring” , WCRE, 2002.
[2] B. S. Baker, “A Program for Identifying Duplicated
Code”, Computer Science and Statistics, 1992.
[3] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L.
Bier, “Clone Detection Using Abstract Syntax Trees” , ICSM,
1998.
[4] Beyer, H. and K. Holtzblatt, Contextual design:
defining customer-centered systems, Morgan Kaufmann
Publishers, San Francisco, California, 1998.
[5] Eclipse IDE. http://www.eclipse.org
[6] S. Ducasse, M. Rieger, S. Demeyer, “A language
Independent Approach for Detecting Duplicated Code”,
ICSM, 1999.
[7] Fowler, Martin Refactoring: Improving the Design of
Existing Code, Addison Wesley, 2000.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns Elements of Reusable Object-Oriented
Software, Addison Wesley, 1994.
[9] Hunt, A. and D. Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley, 2000.
[10] W. Griswold, “Coping with Software Change Using
Information Transparency” , ICSE, 1999.
[11] GRUMPS project, http://grumps.dcs.gla.ac.uk
[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code”, IEEE Transactions on
Software Engineering System, 2002.
[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-oriented
programming”, ECOOP, 1997.
[14] R. Komondoor, and S. Horwitz, “Using Slicing to
Identify Duplication in Source Code”, ISSA, 2001.
[15] J. Krinke, “ Identifying Similar Code with Program
Dependence Graphs” , WCRE, 2001.
[16] B. Lagüe, D. Proulx, E. M. Merlo, J. Mayrand, and J.
Hudepohl, “Assessing the Benefits of Incorporating Function
Clone Detection in a Development Process” , ICSM, 1997.
[17] B. Lange and T. Moher, "Some Strategies of Reuse in
an Object-Oriented Programming Environment", CHI, 1989.
[18] M. B. Rosson and J. M. Carroll, “Active Programming
Strategies in Reuse”, ECOOP, 1993.
[19] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr., "N
degrees of Separation: Multidimensional separation of
concerns", ICSE, 1999.

