

 DocWizards: A System for Authoring Follow-me
Documentation Wizards

Lawrence Bergman, Vittorio Castelli, Tessa Lau, Daniel Oblinger
IBM T.J. Watson Research Center

19 Skyline Dr.
Hawthorne, NY 10532,USA

Tel: 1-914-784-7946
{bergmanl, vittorio, tessalau, oblio}@us.ibm.com

ABSTRACT

Traditional documentation for computer-based procedures
is difficult to use: readers have trouble navigating long
complex instructions, have trouble mapping from the text to
display widgets, and waste time performing repetitive pro-
cedures. We propose a new class of improved documenta-
tion that we call follow-me documentation wizards. Fol-
low-me documentation wizards step a user through a script
representation of a procedure by highlighting portions of
the text, as well application UI elements. This paper pre-
sents algorithms for automatically capturing follow-me
documentation wizards by demonstration, through observ-
ing experts performing the procedure. We also present our
DocWizards implementation on the Eclipse platform. We
evaluate our system with an initial user study that showing
that most users have a marked preference for this form of
guidance over traditional documentation.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. – Training, help, and docu-
mentation.
General terms: Documentation, Algorithms, Human Fac-
tors
Keywords: Documentation generation, programming-by-
demonstration
INTRODUCTION
Knowledge about how to do things – install printers, fill out
expense reports, configure the desktop, etc. – is an impor-
tant resource for the modern computer user. Capture and
dissemination of such procedural knowledge is typically
through one of two mechanisms.
The first is scripts or wizards. For many applications these
provide an excellent end-user experience, greatly simplify-
ing potentially complex tasks by walking the user through a
process, step-by-step. However, there are several problems

with these forms of automation. First, they are laborious to
author, and difficult to maintain. Second, they are often not
robust to unforeseen conditions. Most computer users have
had the uncomfortable experience of discovering partway
through a wizard that either their own knowledge or the
structure of the wizard is inadequate to permit further pro-
gress. Finally, scripts and particularly wizards serve poorly
as tutorials. A user who wants to perform a task similar to
the automated task, but with a few differences, receives
little or no guidance from the wizard or script.
The other common form of procedural knowledge transfer
is through documentation. Well-written documentation
provides a user with a conceptual overview of the applica-
tion model, as well as sequences of operations to perform
common tasks. There is a very strong tutorial nature to
documentation, overcoming the limitation of wizards and
scripts. The downside is that documentation is frequently
more difficult to follow. The user is burdened with associ-
ating descriptive elements within the documentation (either
text or images) with the actual application UI. Further-
more, users may find it difficult to keep track of where they
are in the document (see [1] for a discussion). This is par-
ticularly problematic when there is control logic in the pro-
cedure (e.g., a branch based on state of the UI or on the
user’s goal), or when unanticipated events occur. Finally,
documentation is also difficult to produce and costly to
maintain.
We propose a solution to the capture and dissemination of
procedural knowledge that we believe embodies the bene-
fits of both documentation and scripts/wizards. We call our
solution follow-me documentation wizards. Follow-me
documentation wizards provide live documentation – they
continually show the user the current position in the proce-
dure, highlight the relevant application controls, and can
even automate portions of the procedure. They are de-
signed to address problems users have with existing docu-
mentation, such as difficulty navigating the procedure struc-
ture, inability to locate onscreen objects mentioned in the
text, and trouble interpreting conditional branches in the
instructions.
Though the cost of constructing follow-me documentation
wizards using traditional tools may be prohibitively expen-
sive, we have developed a low-cost method for authoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
UIST’05, October 23–27, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-1-59593-023-X/05/0010...$5.00.

based on demonstrating the procedure one or more times
directly on the application GUI.
The major contributions of this paper are:
� A new class of procedure documentation which we call

follow-me documentation wizards;
� Algorithms for constructing follow-me documentation

wizards that support evolution of the procedure
through multiple demonstrations as well as manual ed-
iting;

� An implemented follow-me documentation wizard sys-
tem for the Eclipse platform, which we call DocWiz-
ards;

� The results of a preliminary user evaluation of the
DocWizards system.

The paper begins with a scenario describing the use of our
follow-me documentation wizard system, followed by a set
of additional application scenarios. We then present an
overview of the system functionality and features. This is
followed by a discussion of the system architecture and
a discussion of the results of our user study. Sections on
related and future work conclude the paper.
Terminology
Several terms will be used consistently throughout the pa-
per. The term application will be used to refer to the soft-
ware on which a procedure is being demonstrated or re-
played. By contrast, the term system will be used to refer to
our follow-me documentation wizard software. The terms
script and procedure representation will be used inter-
changeably to refer to both the visual format of the proce-
dure produced by the follow-me wizards system as well as
its internal representation.
SAMPLE SCENARIO
We will illustrate the use of our follow-me documentation
wizard system, which we call DocWizards, through a sim-
ple example. We begin by describing the process of author-
ing a follow-me documentation wizard, and then will de-
scribe the use of that wizard.
Authoring. Jane is lead developer for a newly-formed team
tasked with developing a multi-media plug-in for the
Eclipse application platform. Over the past several weeks,
Jane has identified and installed on her own system several
plug-ins and libraries that her team will be using as a devel-
opment base. One of these installs is the ABCMusic utility
library, an open-source project that her team intends to
modify. The project is available from a CVS source reposi-
tory at the open-source CodeShareIt website. In a single
session, Jane records the steps to create a CVS repository
location for CodeShareIt, the steps to check out the AB-
CMusic source code, and the steps to build the ABCMusic
library. As she is recording, she adds some comments to
the script, indicating the major subtasks. Once she has
completed the task, she makes the script available in her
team’s local repository.

Playback with additional authoring. Paul is the first
member of the team to install ABCMusic. He grabs the
script from the team repository and loads it into DocWiz-
ards.
Since he is the first to try the script, he decides to follow it
fairly carefully, with recording turned on. When he starts
playback of the script, the first statement in the script is
highlighted (Figure 1a), and the “Window” menu item as-
sociated with that step is highlighted in his Eclipse applica-
tion (Figure 1b). He notices the comment at the top of the
script that this portion will check out ABCMusic from the
code repository (located at codeshareit.net). Realizing that
he needs to perform these steps, Paul presses the “Do single
step” button in the DocWizards control panel, letting the
system do the menu selection for him. The DocWizards
system performs the menu selection, and then highlights the
next line of the script, and the corresponding on-screen
widget.
Paul continues in this manner, letting the DocWizards sys-
tem performs actions until he notices that the next set of
steps in the script will set up a CodeShareIt repository loca-
tion. Since he already has one defined, he takes over, and
opens his predefined repository location. As soon as the

Figure 1. Initial recording and playback of a DocWizards
script. (a) Portion of the initial script at the start of the sec-
ond recording session. Note the highlighted step, showing
the first predicted action to be performed. (b) Highlighting
in the application UI of the widget corresponding to the
predicted action.

(a)

(b)

DocWizards system sees an performed action that does not
correspond to the most recent predicted action, it modifies
the script, inferring a conditional based on differences be-
tween the GUI state during Paul’s demonstration and the
original demonstration by Jane (Figure 2). In this particular
case, DocWizards notices a tree entry describing the
CodeShareIt repository location which was present during
Paul’s demonstration, but not during Jane’s, and uses the
existence/absence of this widget to distinguish the two
demonstrations.
Note that this form of incremental update can be used
whenever the existing script does not adequately cover cur-
rent conditions, including recovery actions for unantici-
pated error conditions.
Paul continues to disregard DocWizards recommendations
as he proceeds through a check-out process different than
that demonstrated by Jane. Once the checkout is complete,
he performs the same action that Jane did to begin configu-
ration of the newly checked-out software. As soon as
DocWizards sees an action that corresponds to the existing
script, it moves forward in its predictions. Paul now returns
to using the “do single step” control and quickly steps
through the procedure with no further deviation from the
original. At the successful conclusion of the procedure,
Paul saves the updated script and stores it back into the
team repository.
Playback. Joe is a new member of the development team.
He checks out the ABCMusic installation script from the
team repository and plays it back in DocWizards. The
script has been through several authoring cycles at this
point, and the accompanying note says that it is fairly well
tested. Since he is relatively new to the Eclipse environ-
ment, however, he decides to go through the script slowly,
performing the actions himself, to get a feel for what it is
doing. He reads each line in the script as it is highlighted,
along with associated comments that have been added by
team members as the script has evolved. He easily locates
the controls for each step in the script, and performs the

action at each step. Because DocWizards tells Joe the ac-
tion to be performed at each step in the procedure, he finds
it very easy to get through the installation. Since he is par-
ticularly interested in learning, from time to time he does
some exploration not described in the procedure, for exam-
ple, navigating through installation components, occasion-
ally opening and examining contents. DocWizards contin-
ues to suggest the next “on track” action while Joe does
this, and when Joe returns to the path and performs the sug-
gested action in the script, next-step predictions continue.
Ellen is a seasoned member of the team. She checks out the
ABCMusic installation script from the repository, notes that
it has been in use for a while, and simply presses the “do
all” button. The script runs successfully and quickly to
completion.
OTHER SCENARIOS
There are a variety of scenarios for which we think follow-
me documentation wizards are particularly appropriate as
replacement for traditional documentation, scripts, or wiz-
ards. These scenarios all assume an expert author, who is
comfortable with reading and editing scripts and who is
intentionally authoring the procedure. The end-user, on the
other hand, can range from a complete novice to an expert
who might assume an authoring role on-the-fly. Possible
uses include:
Groupware procedures. The sample scenario described
above can be characterized as development of a groupware
procedure. Frequently groups within organization have pro-
cedures that are particular to that group. Such procedures
are typically shared using written descriptions disseminated
through email or collaboration tools, such as teamrooms or
wikis. Often no one person is tasked with developing group
procedures, and the resources to develop such procedures
may be minimal. By providing for lightweight initial au-
thoring combined with on-going evolution of the procedure,
follow-me documentation wizards may provide an excellent
alternative to traditional documentation.

Demonstrated
 action

Original
script

Original script

Generated logic

Figure 2. DocWizards script with automatically generated control structure. This script fragment shows the top
portion of the script from Figure 1a, after adding an off-track action in a subsequent recording. The if-then-else
statement is automatically inserted (and italicized) by the DocWizards learning component.

Guided walk-throughs. A common form of documenta-
tion is tutorials. Tutorials often instruct the user on how to
perform a pre-specified goal by walking them through a
sequence of operations. Doing this in-context, on the appli-
cation interface itself, minimizes the need for a user to
translate from what they are seeing during the tutorial to
what they will be doing when using the application for real
work.
Technical support. Technical support may be facilitated
when the support personnel can operate directly on the
user’s desktop. A method for further enhancing this would
be to record procedures for performing particular installa-
tions or repairs and then distributing these to end users.
The author would be the expert technician, who would re-
cord and annotate several demonstrations of the same pro-
cedure in different end-user environments. Novice end-
users would benefit from documentation that is easier to
follow than traditional documentation and includes some
automation, yet permits interleaving of “off-track” trouble-
shooting by support personnel.
SYSTEM FEATURES
The system we are describing, DocWizards, is a follow-me
documentation wizard system implemented on the Eclipse

platform [2]. The system is capable of recording and re-
playing actions performed on SWT widgets within Eclipse.
Figure 3 shows a screenshot of the DocWizards system
during playback of a previously authored procedure.
Learning from multiple demonstrations. Learning from
multiple demonstrations is a key feature of DocWizards.
By incorporating new demonstrations when the application
UI changes (with new version releases, for example), or
when previously unseen error conditions are encountered,
procedures can evolve and remain current.
After the first demonstration of the procedure, subsequent
demonstrations result in on-the-fly modificationd of the
procedure structure that keeps it consistent with all prior
demonstrations (unless the script has been manually edited,
as we will discuss in the Architecture section). The imme-
diate feedback of seeing the procedure representation up-
date as actions are performed is a critical part of the author-
ing process. In the Architecture section we will discuss how
multiple demonstrations are used to generate and maintain
the script representation.
The wizards within our system are represented as textual
scripts. Each script contains a set of actions such as “click

Figure 3. The DocWizards GUI. A previously authored script is loaded in playback mode. Notice that the sug-
gested next step in the procedure is highlighted, with a corresponding screenshot that illustrates that step.

Script
representation

Screenshot of
current step

Automation
controls

Next step

Comments

X” or “select list item Y”. In addition, there may be con-
trol logic such as conditional branches or loops.
Editable procedure representation. Although the scripts
are automatically generated, they are also editable. A learn-
ing system is often unable to perfectly infer the intent of an
author from just a few demonstrations. To make the system
full usable, the author must be able to change the script,
either during the recording process, or at a later time. Edit
operations currently supported include deleting steps, mov-
ing steps, and adding annotations. Our algorithm for updat-
ing the script representation ensures that manual edits are
retained during learning. This will be discussed in detail in
the Architecture section. Additionally, there is a multi-step
undo facility that reverses the effects of the last action on
the script modification process.
Partial and complete automation. During playback, the
system provides the user with a facility for either complete
or partial automation. The user can choose to have the sys-
tem execute the next suggested step by pressing a “do sin-
gle step” button. The user can also request automatic com-
pletion of the rest of the script at any point in time by press-
ing a “do all” button.
Highlighting. A system that is designed to guide users
through procedures needs to provide as much feedback as
possible about what the user (or system) is to do next, and
where that action is to be performed.
Two forms of highlighting are presented during playback.
The first is highlighting of the next step to be performed in
the script, by coloring the background of that step (see Fig-
ure 1a). This gives users a visual cue as to where they are
in the procedure execution. The other form is highlighting
within the application UI of the widget on which the next
step is be performed (see Figure 1b). This form of high-
lighting is currently displayed as a colored oval around the
target widget.
Mixed initiative. An important feature of DocWizards is
the mixed initiative model – a facility which allows the user
to perform portions of the procedure, while permitting the
system to perform other portions of the task automatically,
with the decision to retain or yield control fully at the dis-
cretion of the user. When the user is performing portions of
the task manually, an important feature is an ability of the
system to follow along, helping the user to retain context by
showing them where their actions are located with respect
to the rest of the current procedure.
While playing a procedure, the user is free to perform any
steps manually, even steps that diverge from the script. The
system continually monitors the user’s actions and com-
pares them with the procedure representation. While the
user’s actions are consistent with the script, the system will
follow, suggesting the appropriate next action at each point
in time. When inconsistencies are detected, the script will
be modified if required (i.e., if recording is turned on), and
the system will scan the script looking for portions that

might be consistent with the user’s actions. When such
correspondences are detected, the system resumes predic-
tion of possible next actions.
Generalization. A common feature in programming-by-
demonstration system is a facility for generalizing (i.e.,
variabilizing) entities within a procedure. There are two
forms of generalization supported within the DocWizards
system. The first is variablization of entities used within
loops (discussed in the Architecture section below). The
other is generalization of text input and selection opera-
tions. The author of a procedure can specify that a particu-
lar entity (for example, a string entered into a text input
field) is to be generalized. This is accomplished by select-
ing an individual step within a script, and then invoking a
“parameterize step” menu item. On replay, the user will be
free to enter any value (or select an entity if the step speci-
fies selection from a list, tree, or table). This is quite useful
for applications such as user name/password entry.
We are currently implementing general-purpose variabliza-
tion of repeated entities, a feature that was supported by our
earlier SheepDog system [1].
Full-feature documentation. Since DocWizards is in-
tended to serve as a complete replacement for more tradi-
tional forms of documentation and help systems, it includes
all the important features of such documentation. These
features include textual descriptions, listings of actions to
be performed, human-readable control logic, multiple levels
of detail, and labeled screen captures.
The script representation and display in DocWizards is de-
signed to allow it to serve as a replacement for more tradi-
tional forms of documentation. The procedure scripts are
presented as tree structures. Portions of the script (such as
the bodies of loops or of if-then-else statements) can be
collapsed or expanded by the user to provide different lev-
els of detail. Annotations can be manually inserted into the
script, allowing for explanatory comments or section head-
ings. Screen-captures can be automatically created during
recording, with highlighting overlaid to illustrate UI action.
These screen-captures can be presented on a per-step basis
during playback, or can be automatically inserted into an
HTML representation of the script, providing a complete
document that can be displayed or printed.
ARCHITECTURE
Figure 4 shows the major components of the DocWizards
system, and the data-flow relationships between them. In
this section, we will describe each of the components and
how it contributes to the functionality of the DocWizards
system.
State/action instrumentation. To facilitate learning, we
employ a model of events and state that we call the state-
action pair model. The fundamental idea is to capture the
state of the GUI just prior to each user action, on the as-
sumption that the user chooses which action to perform
based on the prior actions they have taken and on the visi-

ble state of the on-screen interface at the time of the action
(see [3] for a more detailed discussion of the state-action
pair model). Of course, this is a simplification, but our ex-
perience to-date has been that it works remarkably well.
The state/action instrumentation provides information from
SWT widgets within Eclipse [2], and is used to build the
state-action pair model. The state consists of the hierarchi-
cal relationships between widgets and widget contents, in-
cluding the values within lists, the checked/unchecked state
of radio buttons, the text of labels, etc. This state informa-
tion provides a continually updated view of what is visible
on-screen. The actions describe each step taken by the
user, for example, clicking a button, or entering a value in a
text input field.
State is retained in an internal structure called the world
model that mirrors the on-screen widget hierarchy. As
needed, the system performs a snapshot, traversing a por-
tion of the hierarchy, querying each widget for its state, and
using that information to update the world model. At the
start of recording or playback operations, we snapshot the
entire GUI. Thereafter, we update the world model incre-
mentally, by snapshotting the current window at the start of
each action. We also snapshot whenever a new window or
menu is displayed, by registering callbacks with SWT for
display events.
Actions are also received by registering callbacks with
SWT for particular events. Most of these notifications are
fairly high-level, for example, “list item selection” or “but-
ton click”. The state-action pair instrumentation provides
these user actions to the learning component during re-
cording, and to the interpreter during playback, allowing
them to update the procedure structure, and predict next
steps, as appropriate.
Learning component. The learning component is respon-
sible for maintaining the script representation during re-
cording. The learner ensures that the script continually
remains consistent with all demonstrations of the procedure
that have been seen (editing operations may invalidate this
rule; we will discuss editing later in this section)
As new actions are received, the action is checked against
the previously generated script. The learning algorithm
maintains a “current position” pointer; if the newly received
action (which we will refer to here as the new action) corre-
sponds to the action at that place in the script, the script is

consistent and no changes are made. On the other hand, if
the action does not correspond to the action in the script
(which we will refer to here as the inconsistent action), the
learning algorithm needs to adjust the script to be consis-
tent.
For example, consider the transformation of the script in
Figure 1a into the script of figure 2. At the point that the
learning algorithm was expecting the action “Select menu
item File->New->Other...”, the user actually performed the
action: “Expand tree item pserver:anonymous@
cvs.codeshareit.net/cvsroot/ABCMusic”. This difference
caused the learning algorithm to create an if-then-else struc-
ture which is consistent with both demonstrations.
Consistency adjustment is done by creating a set of hy-
potheses for potential structures that are consistent with all
demonstrations. Rather than doing this from scratch, which
cannot be done in real-time, the current script structure is
used as a starting point. The learning component creates a
set of variations of a local region of the script that contains
the inconsistent action. Possible hypotheses include creat-
ing a conditional branch, creating a loop, or adding the new
action to an existing conditional branch or loop. A set of
heuristics are used to score each potential hypothesis. Sim-
plicity of structure contributes heavily to this scoring func-
tion. The lowest scoring hypothesis is selected, and the
newly modified script is displayed.
Loop detection looks only at the actions within a demon-
stration. We propose a Foreach loop whenever a common
set of action is performed for each item within a list, table,
or tree, and these items are processed in ascending or de-
scending order. Within the loop body, each instance of the
item is automatically replaced by the iteration variable.
In addition to dynamically determining script structure, the
learning algorithm must also propose conditions for
branches. Branch detection begins by binning analogous
actions. The question is then asked, “What features distin-
guish the state associated with actions in these different
bins?” We use an iterative algorithm which employs heu-
ristics to limit the scope of the state that must be examined.
We start by looking for absence/existence of widget in-
volved in the action (i.e., one action has the widget avail-
able, the other does not). Next we look at features of the
widget involved in the action. The scope is then widened to
look at all siblings of the widget. Finally all widgets within

Procedure
Representation

World
Model

State/action
 InstrumentationLearning

Component

Interpreter
Execution

 Instrumentation

Application

Figure 4. Architecture of the DocWizards system.

the window are considered. At each iteration, a classifica-
tion tree is employed to produce a “best” explanation of the
differences between bins, and to score the explanation. In
addition to how well it explains why different actions were
taken, the score also considers simplicity of the explanation.
Broadening the range of the search reduces the score. Any-
time a perfect score is computed, the search is terminated;
otherwise the best score from all levels of the search is se-
lected. The classification tree associated with the best score
is readily converted into a rule involving features in the
state and their values. Examples include “list item X ex-
ists”, “button Y is unchecked”, and “tree item Z is se-
lected”.
The predicate for a conditional is a Boolean function of
simple features of UI widgets (e.g., entire text string,
whether or not selected, etc.). More advanced hypothesis,
such as “last item in the list”, or item containing the sub-
string “.exe” could readily be accommodated, but will re-
quire additional input from the author to select between
multiple hypotheses.
Editing operations introduce additional constraints to the
learning process. The problem is to ensure that manual
editing operations are not undone by automated script
modifications. Our answer is to “lock” a script that has
been manually edited, making it impervious to future auto-
mated changes. In other words, a script that has been edited
can have steps added to it (including surrounding control
structures), but its internal structure can never be altered.
We do this by constraining the hypothesis generation proc-
ess, so that only hypotheses consistent with such locking are
generated. Note this is an extremely conservative ap-
proach. We have ensured that manual edits will never be
undone, but at the cost of rigidity in the script structure.
For example, editing of a possible iteration prior to infer-
ring the loop may result in an inability to ever create the
loop structure, even though it might be obvious to a human
being. See [4] for a more detailed description of the learn-
ing algorithm.
Interpreter. The interpreter executes the script during
playback. In addition to the script itself, there are two
sources of information required by the interpreter. First is
the action performed, either by the user or by system auto-
mation, which is received from the state/action instrumenta-
tion. This information tells the interpreter whether the last
predicted action has been performed or if the user has gone
“off track”. The second is snapshots of application state at
appropriate points in time, received from the world model.
The state information is used to make “next step” decisions.
We begin with an “on track” scenario. When an action is
received by the state/action instrumentation, it passes the
action to the interpreter with a call to an “action received”
method. The interpreter recognizes that the action matches
the predicted last action, and prepares to advance its predic-
tion (essentially, advancing a program counter). In order to
determine the next step, however, a state update is required.

The state cannot be properly updated until the effects of the
action on application state have completed. We make a
simplifying assumption, that the state updates will be com-
plete when no state changes have been received by the
state/action instrumentation for a fixed period of time,
which we call a quiescence interval. This interval is cur-
rently 0.5 seconds, during which no SWT update events
(e.g., window creates, window deletes) are received. The
interpreter starts the timer when an action is received.
When the quiescence interval has been satisfied, a state
snapshot is generated, and sent to the interpreter’s “get next
step” method. This method makes a next step decision. If
the next step in the script is a simple action (e.g., “click
button X”), the interpreter simply returns that step. If it is a
conditional, the interpreter evaluates the condition using the
current state information. If the step contains variables,
these variables are instantiated using a set of stack frames.
The interpreter continues to move forward, evaluating logic
statements, until a simple action is reached, which is then
returned as the next prediction.
If an “off track” action is received, a bit of additional proc-
essing is required. We want to generate a best guess as to
where the user might be in the script. We are currently
using a simple-minded alignment algorithm that looks only
at the current action. The script is scanned for an action
that matches the one received. If a match is found, that
action is proposed as the next step. If no such match is ob-
tained, the previous action is retained as the next step pro-
posal. In other words, the program counter is not moved
forward.
Execution instrumentation. The execution instrumenta-
tion performs two basic functions. The first is highlighting
widgets on-screen. The second is performing actions auto-
matically on the interface.
Highlighting consists of simply querying the widget to be
highlighted for its on-screen location, and drawing the ap-
propriate overlay on the graphics context for the containing
window. A bit of work is required to maintain the overlay
when the window repaints (after being minimized, or oc-
cluded, for example). We register (with the Display) for
paint events, and re-draw the overlay when they are re-
ceived. Since the overlay may extend beyond the bounda-
ries of the widget being highlighted (we draw an enclosing
rectangle outside the widget bounds), we currently use a
conservative approach – doing a re-draw for all paint events
regardless of which widget generates the event. Although
less computationally intensive schemes (but more difficult
to implement) are evident, we have not noticed a perform-
ance penalty with this naïve approach.
The bulk of the execution automation is performed using an
open source package called Abbot-for-SWT [5]. This
package provides a library of automation techniques by
widget type, including operations such as “select menu
item”, “select list item”, “click button”, etc. The automa-
tion library is invoked with a pointer to the desired widget,

and parameters that describe the action (for example, the
string of the list item to be selected). The library translates
the command into low-level mouse and keyboard events.
Since the automation package simulates user input, the task
of managing mixed-initiative input is greatly simplified –
automated actions look exactly the same as manual actions
to our state/action instrumentation.
USER EVALUATION
We conducted an initial evaluation of follow-me documen-
tation wizards as a substitute for traditional documentation.
The evaluation had three basic goals:

� Determining how well people operate with DocWiz-
ards compared to traditional documentation

� Determining whether people would use DocWizards as
an alternative to traditional documentation

� Gaining feedback on how well the playback features
within DocWizards work, including highlighting and
next-step automation

The evaluation group consisted of researchers and develop-
ers at IBM TJ Watson Research Center. The twelve par-
ticipants had experience using the Eclipse platform for code
development ranging from only having tried Eclipse once
or twice to several years of extensive use. The participants
had individual sessions, each lasting thirty to forty-five
minutes.
Participants were asked to do an installation and configura-
tion task by following a printed document. The document
contained descriptive text, lists of actions to be performed,
and several screen shots showing desired outcomes, or the
location of hard-to-find UI elements.
Following a brief training session, participants also per-
formed the same task using the DocWizards system. Par-
ticipants were paired by experience level, with one member
of the pair using the printed documentation first, and the
other using the DocWizards system first. The participants
were further divided into two groups. One group (six par-
ticipants) was presented with a version of DocWizards that
tracked their actions and suggested a next step, but had no
automation features. The other group (six participants) was
presented with a version of the system that had a “do single
step” button in addition to the automatic tracking feature.
Participants in this group were shown both automation and
tracking features, and were told that they could perform
each step in the procedure themselves, with the system fol-
lowing along, or using the automation feature.
One notable difficulty arose in use of the DocWizards sys-
tem. Although participants were told to follow the script as
closely as possible, a number of them did things differently
from the instructions, causing the DocWizards system to
run into trouble tracking them. In several cases, we guided
the users back “on track”. We felt that this invalidated our
timings, so we are not reporting comparative statistics. To
our surprise, the time for completion for the printed docu-

mentation and using DocWizards was roughly equivalent,
even when automation was available.
Overall impressions. Participants were generally enthusi-
astic about the follow-me documentation wizard. In re-
sponse to a question as to which they preferred, traditional
documentation or the DocWizards system, eight users
strongly preferred the DocWizards system, three users
somewhat preferred it, and a single user somewhat pre-
ferred traditional documentation (and one non-respondent).
Features that participants found particularly helpful in-
cluded the highlighting of widgets within the application,
reporting that it helped them to locate the relevant portion
of the interface to be operated. Participants also liked the
highlighting of lines within the script, reporting that it
helped them to keep track of where they were. Participants
were more divided on the automated script following. Al-
though most participants liked the fact that the script was
being automatically evaluated, several, particularly in the
group who had the “do single step” control available, noted
that they were not really learning from stepping through the
script, and if they had to do it on their own later, would
probably be lost. One the other hand, two of the participants
stated that they felt that DocWizards was particularly effec-
tive in helping them to learn the task. Both stepped through
the script manually, and examined the logical structure of
the script as they were performing the task.
A number of participants asked why we didn’t simply have
a “do all” button that would perform the entire script auto-
matically (in fact, the system has such a capability, which
we disabled for this evaluation). On the other hand, several
participants said that they liked having the full script, in-
cluding conditional expressions, available for them to
evaluate as they performed the procedure. One participant
stated that he typically does not trust automated systems of
this sort, and that having another layer of automation was
undesirable. This was the only user to state such a view,
however.
There were several common experiences and opportunities
for improvement that we noted during the study:
Confusion. We noticed several participants becoming con-
fused between what the system was suggesting, and what
the system was doing for them. In several cases, when the
system highlighted a widget, indicating that the next step
was to select that widget, the user incorrectly assumed that
the highlight indicated that the selection had already been
performed. At the time of the study, we were highlighting
by drawing a rectangular bounding box. Our conjecture,
backed by user comments, was that the rectangular shape
was too similar to the rectangular shading that the UI uses
to indicate widget selection. Since then, we have begun to
use oval-shaped highlighting which seems to lessen this
confusion.
Tracking problems. A source of difficulty was the inabil-
ity of the DocWizards system to track users when they per-

formed sub-goals, such as navigation, using action se-
quences other than those within the script. For example,
one experienced user clicked on a toolbar shortcut to navi-
gate to a different Eclipse perspective, rather than the menu
selection sequence that was recorded in the script. Our
system is currently unable to recognize these actions as
being equivalent, and loses track of the user’s position
within the script.
Several of the participants also experienced difficulty when
unexpected events occurred while performing the task (i.e.,
events not handled by the script, such as popup error dia-
logs).
Conditionals: We noticed that a number of participants
struggled with evaluating the conditional logic in the
printed documentation. These conditionals are based on the
state of the UI, for example, “if the list does not contain the
entry X, then you will need to check-out project X using the
following steps”. When using DocWizards, most of the
participants simply allowed the system to do the evaluation
for them, without checking or even realizing that a decision
had been made, and hence had no problem with identity of
the conditional elements. A small number checked what the
script was doing, either to learn what was going on, or to
validate the system. For these users, DocWizards was no
more helpful than the printed documentation in evaluating
the conditionals, since it provides no visual indicator of the
UI entity used to make the decision. Such indicators might
be desirable, particularly in tutorial settings.
Context. A number of users stated that DocWizards did
not give them sufficient context while performing the pro-
cedure. One form of context that was lacking was informa-
tion about sub-goals and where current actions were located
in the larger task structure. A number of participants stated
that more comments in the script (or perhaps context-
sensitive information) would be very helpful. One partici-
pant suggested highlighting the block currently being exe-
cuted and displaying comments for that block.
Another form of context that was lacking was information
about completion of sub-procedures. A common sentiment
was that showing expected results, perhaps using screen
captures, at key points in the script would be very helpful
(note that to simplify the user experience, we removed the
screen capture display from the DocWizards system for the
purposes of this study).
Summary: Most participants really liked DocWizards. A
number of them stated that they would love to have
DocWizards for installations or repetitive tasks. As a result
of this study, we have a clear sense of issues that need to be
addressed, and additional features that need to be imple-
mented to enhance the usability of the system. These are all
quite doable, and we have a good indication that an im-
proved DocWizards would be useful to end-users.

RELATED WORK
Today's documentation authoring systems (e.g., Macrome-
dia's RoboHelp [6]) provide the ability to create static
documentation using editors such as Microsoft Word or
Dreamweaver. These help systems are oriented towards
describing the functionality of widgets in an application
window or dialog box, and provide little or no support for
capturing paths through an application.
Systems such as RWD's Info Pak Simulator [7] create tuto-
rials based on recordings of a user interacting with an ap-
plication. DocWizards extends this work, by actually exe-
cuting the resulting procedure rather than running in a simu-
lated environment (in a browser window), and by support-
ing model updates from addition demonstrations.
DocWizards’ technique of procedure authoring through the
use of demonstrations follows in the traditional of classical
programming by demonstration (PBD) systems [8, 9, 10].
In earlier work we developed a batch learning approach that
generates a procedure from a set of demonstrations [1].
DocWizards, by contrast, is an incremental learner, so
demonstrated actions may cause immediate updates to the
learned procedure. Further, unlike the earlier system which
was more like a wizard, DocWizards generates a fully
transparent (i.e., human-readable) procedure. DocWizards
also extends the learning capabilities of earlier PBD sys-
tems such as Tinker [11] by automatically inferring the
predicates for conditional statements.
Considerable support for the DocWizards approach can be
found in the intelligent tutoring systems (ITS) literature.
Work such as Electronic Performance Support Systems [12]
focused on the reduction in documentation required when
documentation is provided in context, either through sce-
narios or by limiting the functionality available to novice
users. The documentation provided by DocWizards is simi-
lar in spirit, since it provides information contextualized by
the current step in the procedure. Palmiter and Elkerson
discovered that animated demonstrations with users in a
passive role were less effective than text-only explanations
for long-term learning [13]. DocWizards combines in-
context text-based help documentation with user-controlled
animation. We plan to test whether this combination pro-
vides a "best of both worlds" kind of performance.
The notion of tracking a user’s performance on a task
against a known model is one that has been extensively
studied in Intelligent Tutoring Systems [14]. Most intelli-
gent tutoring systems are programmed either convention-
ally, or by encoding domain knowledge for a problem
solver [14]. We note that there are examples of ITS sys-
tems (see [13]) that use learning to acquire examples.
DocWizards extends prior art by learning the underlying
model from demonstrations, and presenting it in a human-
editable form.
Because of the difficulty of programming these models,
some work has been done in ITS to facilitate the authoring

process [15]. The WITS system [16] for example, relies on
demonstrations in order to "program" the underlying model.
In order to generalize beyond a specific demonstration, it
allows the author to manually generalize the recorded pro-
cedure. DocWizards uses multiple demonstrations to
automatically learn these generalizations. Selker’s COACH
system [17] provides in-context guidance based on observ-
ing user behavior, using examples acquired by demonstra-
tion. DocWizards differs in using the demonstrations to
learn a task model (which is pre-coded in subject frames in
COACH).
CONCLUSIONS AND FUTURE WORK
We have presented a new form of procedural knowledge
capture, follow-me documentation wizards, which provide
many of the benefits of traditional documentation as well as
traditional wizards or scripts. Follow-me documentation
wizards provide a complete textual description of the pro-
cedure including all control logic and optional screen-
captures. They also provide live guidance by walking the
user through the script representation while highlighting the
associated application controls, and provide partial or com-
plete UI automation.
We have also described DocWizards, a follow-me docu-
mentation wizard system in which the procedures are au-
thored through demonstration. DocWizards supports in-
cremental development of procedures through multiple
demonstrations as well as manual editing.
An initial evaluation of DocWizards showed strong enthu-
siasm for this form of procedure documentation, compared
to traditional documentation. We also identified several
opportunities for improvement, including providing more
context within the scripts and better support for synony-
mous action sequences.
One feature that DocWizards is clearly lacking is a means
for the author to specify where user inputs are required.
One of the strengths of traditional wizards is that they ag-
gregate all of the required (and optional) user inputs. We
will be developing light-weight techniques for an author to
indicate that particular UI elements require input from the
user, with the option of either requesting these directly on
the application UI, or in separate generated dialogs.
Another feature that we are beginning to explore is modu-
larization of follow-me documentation wizards. Procedures
often contain subtasks that are used in a variety of contexts.
A facility for culling out and parameterizing those subtasks
would allow authors to build up reusable task libraries.
Using the same form of action alignment that is used to
track user actions, we believe we can automatically identify
small candidate sets of subtasks, thereby facilitating the
problem of searching a task library.
REFERENCES
1. Tessa Lau, Lawrence Bergman, Vittorio Castelli, Daniel

Oblinger, Sheepdog: Learning Procedures for Technical

Support. In Proceedings of IUI 2004, Madeira, Portu-
gal, January 2004, pp. 109-116,

2. http://www.eclipse.org

3. Castelli, V, Bergman, L, Lau, T., and Oblinger, D., Lay-
ering advanced UI functionalities on existing applica-
tions, IBM Technical Report RC23583, 2005.

4. Daniel Oblinger, D., Castelli, V., Bergman, L. and Lau,
T. Similarity-Based Alignment and Generalization. To
appear in Proceedings of ECML 2005.

5. http://sourceforge.net/projects/abbot/

6. http://www.macromedia.com/software/robohelp/

7. http://www.rwd.com/products_services/enterprise_learni
ng_solutions/products/infopak_simulator/

8. Allen Cypher, ed. Watch What I Do: Programming by
Demonstration. (1993). MIT Press, Cambridge, MA.

9. Henry Lieberman, ed. Your Wish is My Command:
Programming by Example. (2001). Morgan Kaufmann.

10. Safonov, A., Konstan, J.A., and Carlis, J.V., Beyond
Hard-to-Reach Pages: Interactive, Parametric Web Mac-
ros, In Proceedings of HFWeb 2001.

11. Henry Lieberman, Tinker: A programming by Demon-
stration System for Beginning Programmers., In Watch
What I Do: Programming by Demonstration. (1993).
MIT Press, Cambridge, MA.

12. Carroll, J.M. and Kay, D.S. (1988). Prompting, feed-
back and error correction in the design of the scenario
machine. International Journal of Man-Machine Stud-
ies, 28:11-27.

13. Palmiter, S. & Elkerton, J. (1991). An evaluation of
animated demonstrations for learning computer-based
tasks, In S.P. Robertson, G.M. Olson, & J.S. Olson
(Eds.), Human Factors in Computing Systems: CHI'91
Conference Proceedings. NY: ACM, pp. 257-263.

14. Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J.
(1987). Cognitive principles in the design of computer
tutors. In P. Morris (Ed.), Modeling Cognition, Wiley.

15. Anderson, J.R., & Pelletier, R. (1991). A development
system for model-tracing tutors. In Proceedings of the
International Conference of the Learning Sciences, 1-8.

16. Farrell, R. and Lefkowitz, L. Supporting Development
of On-line Task Guidance for Software System Users.
In Facilitating the Development and Use of Interactive
Learning Environments, C. P. Bloom & R.B. Loftin,
(Eds.), 1998.

17. Ted Selker, Coach: A Teaching Agent that Learns. In
Communications of the ACM, July, 1994. Vol. 37, No.
7, pp. 92-99.

