
Why PBD systems fail: Lessons
learned for usable AI

Abstract
Programming by demonstration systems have long
attempted to make it possible for people to program
computers without writing code. These systems
typically employ artificial intelligence techniques to
learn from user behavior in order to predict their future
behavior. However, while these systems have resulted
in many publications in AI venues, none of the
technologies have yet achieved widespread adoption.
Usability remains a critical barrier to their success.
Based on lessons learned from three different
programming by demonstration systems, we present a
a set of guidelines to consider when designing usable
AI-based systems.

Keywords
Programming by demonstration, machine learning,
usability, HCI, AI, design.

Introduction
The goal of programming by demonstration (PBD) is to
enable ordinary end users to create programs without
needing to learn the arcane details of programming
languages, but simply by demonstrating what their
program should do. If PBD were successful, the vast
population of non-programmer computer users would
be able to take control of their computing experience

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 1-xxxxxxxxxxxxxxxxxx.

Tessa Lau

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120 USA

tessalau@us.ibm.com

and create programs to automate routine tasks,
develop applications for their specific needs, and
manipulate information in service of their goals.
However, PBD has yet to achieve widespread adoption,
partly because the problem is extremely difficult. How
can any system successfully guess the user's intended
program out of an infinite space of possible programs?

PBD is a natural match for artificial intelligence,
particularly machine learning. By observing the actions
taken by the user (training examples), the system can
create a program (learned model) that is able to
automate the same task in the future (predict future
behavior). However, unlike most machine learning
systems that can rely on hundreds or thousands of
training examples, users are rarely willing to provide
more than a handful of examples from which the
system can generalize. This constraint makes the
design of machine learning algorithms for PBD
extremely challenging: they must learn accurately from
an absurdly small number of user-provided training
examples.

However, when designing machine learning algorithms
for use in a user-facing system, accuracy is not the only
important factor. Our experience designing and
deploying machine learning-based PBD systems reveals
several factors that prevent users from wanting to use
such systems. This paper presents some of the lessons
we have learned about making AI systems usable.

Case studies: Three systems
In the course of our research, we have developed three
programming by demonstration systems that employ
varying amounts of machine learning to intelligently
predict user behavior.

SMARTedit [2] is a text editor that uses PBD to
automate repetitive text-editing tasks. For example,
when reformatting text copied and pasted from the web
into a document, one can demonstrate how to reformat
the first line or two of text, and the system learns how
to reformat the remaining lines. The system is based
on a novel machine learning algorithm called version
space algebra, which uses multiple examples
incrementally to refine its hypotheses as to the user's
intended actions.

SMARTedit was later reimplemented within the context
of a word processor product (based on OpenOffice),
though our feature was never released. During the
development process, we solicited user feedback on the
resulting system and learned that poor usability was
the key barrier to acceptance.

Sheepdog [1] is a PBD system for learning to
automate Windows-based system administration tasks
based on traces of experts performing those tasks. For
example, based on several demonstrations of experts
fixing the configuration of a Windows laptop in different
network environments (static IP, dynamic IP, different
DNS servers), the system produced a procedure that
could apply the correct settings, no matter what the
initial configuration was. The system uses an extension
to input-output hidden Markov models [4] to model the
procedure as a probabilistic finite state machine whose
transitions depend on features derived from the
information currently displayed on the screen.

CoScripter [3] is a PBD system for capturing and
sharing scripts to automate common web tasks.
CoScripter can be used both to automate repetitive
tasks, as well as share instructions for performing a

task with other users. For example, based on watching
a user search for real estate using a housing search
site, CoScripter automatically creates a script that can
be shared with other users to replay the same search.
The system uses a collection of heuristics to record the
user's actions as a script. A script is represented as
human-readable text containing a bulleted list of steps;
users can modify the program and change its behavior
simply by editing the text. A smart parser interprets
each script step in order to execute the instruction
relative to the current web page.

Design guidelines for usable AI
During the course of developing these systems, we
conducted user studies and collected informal user
feedback about each system's usability. This section
summarizes some of our observations.

Detect failure and fail gracefully. SMARTedit's
learning algorithm does not have a graceful way to
handle noise in training examples. For example, if the
user makes a mistake while providing a training
example, or if the user's intent is not expressible within
the system, the system collapses the version space and
makes no predictions. The only action possible is to
start over and create a new macro. Users who do not
have a deep understanding of the workings of the
algorithm, and who just expect the system to magically
work, would be justifiably confused in this situation.

CoScripter's parser does a heuristic parse of each
textual step; because there is no formal syntax for
steps, the heuristics could incorrectly predict the wrong
action to take. When the system is used to automate a
multi-step task, one wrong prediction in the middle of
the process usually leads the entire script astray. When

this happens, we have observed that users are
confused because the system says it has completed the
script successfully, even though it diverged from the
correct path midway through the script and did not
actually complete the desired task. Few users monitor
the system's behavior closely enough to detect when it
has not done what it said it was going to do.

Make it easy to correct the system. Sheepdog's
learning system takes as input a set of execution traces
and produces a learned model. If the learned model
fails to make the correct predictions, the only way to
correct the system is to generate a new execution trace
and retrain the system on the augmented set of traces.
Similarly, SMARTedit's users complained that they
wanted to be able to directly modify the generated
hypotheses (e.g., “set the font size to 12”) without
having to retrain the system with additional examples.
One challenge for machine learning is the development
of algorithms whose models can be easily corrected by
users without the need for retraining.

Encourage trust by presenting a model users can
understand. The plain-text script representation used
in CoScripter is a deliberate design chosen to let users
read the instructions and trust that the system will not
perform any unexpected actions. The scripting
language is fairly close to the language people already
use for browsing the web, unlike the language used in
SMARTedit where users complained about arcane
instructions such as “set the CharWeight to 1” (make
the text bold). SMARTedit users also thought a higher-
level description such as “delete all hyperlinks” would
be more understandable than a series of lower level
editing commands; generating such a summary
description is a challenge for learning algorithms.

Sheepdog's procedure model is a black-box HMM, and
the only way to see what a procedure would do is to
run it. The system administrators who were the target
audience for Sheepdog were uncomfortable with the
idea that a procedure they created and sent to a client
might accidentally wipe the client's hard disk. A
prediction accuracy of 99% might seem to be good
enough for most systems; however, if that remaining
1% could cause destructive behavior, users will quickly
lose faith in the system.

Enable partial automation. The naming of the
Sheepdog system suggests that the users of the
system are “sheep” who blindly follow the
recommendations of the system. Yet users often have
knowledge about their task that is not known to the
system, and they often want to take advantage of
partial automation while incorporating their own
customizations. Early versions of Sheepdog assumed
that all actions users performed were in service of the
automated task, and would fail if (for example) an
instant message popped up unexpectedly in the middle
of the automation. Intelligent systems should be able
to cope with interruptions, and allow users to modify
the automated system's behavior without derailing the
automation.

Consider the perceived value of automation. The
benefits of automation must be weighed against the
cost of using the automation. For PBD systems the
cost includes invoking the system, teaching it the
correct procedure, and supervising its progress.

For example, SMARTedit was originally implemented as
a standalone text editor, rather than integrated into
existing editors. The cost of switching to SMARTedit for

the sake of a quick text edit was perceived as too high;
for simple editing tasks, users felt they could
complete the task more quickly by hand. With
CoScripter, several users have complained that finding
the right script to automate a repetitive task took
longer than simply doing the task by hand. In both
cases, automation was perceived to be useful only for
long or tedious tasks, even though it could have been
applied to a broader range of tasks. Designers should
take users' pain points into account when deciding
where automation can be successfully applied.

Discussion and Conclusions
Based on our experience with several machine learning-
based programming by demonstration systems, we
have learned that usability is one of the critical barriers
to widespread adoption of such systems. Addressing
these usability problems will present new opportunities
for the design of intelligent algorithms.

References
[1] Lau, T., Bergman, L., Castelli, V., Oblinger, D.
Sheepdog: Learning Procedures for Technical Support.
In Proc IUI 2004, ACM Press (2004).
[2] Lau, T., Wolfman, S., Domingos, P. and Weld, D.S.
Programming by Demonstration using Version Space
Algebra, Machine Learning 53, 1-2 (2003).
[3] Little, G., Lau, T., Cypher, A., Lin, J., Haber, E.,
Kandogan, E. Koala: Capture, Share, Automate,
Personalize Business Processes on the Web. In Proc.
CHI 2007, ACM Press (2007).
[4] Oblinger, D., Castelli, V., Lau, T., Bergman, L.
Similarity-based alignment and generalization. In
Proc. ECML 2005, Springer (2005).

	Copyright is held by the author/owner(s).
	CHI 2008, April 5 – April 10, 2008, Florence, Italy
	Abstract
	Keywords
	Introduction
	Case studies: Three systems
	Design guidelines for usable AI
	Discussion and Conclusions
	References

