
Lowering the Barriers to Website Testing with CoTester

Jalal Mahmud and Tessa Lau
IBM Almaden Research Center

650 Harry Rd,
San Jose, CA 95120, USA

{jumahmud, tessalau}@us.ibm.com

ABSTRACT
In this paper, we present CoTester, a system designed to de-
crease the difficulty of testing web applications. CoTester
allows testers to create test scripts that are represented in
an easy-to-understand scripting language rather than a com-
plex programming language, which allows tests to be cre-
ated rapidly and by non-developers. CoTester improves the
management of test scripts by grouping sequences of low-
level actions into subroutines, such as “log in” or “check
out shopping cart”, which help testers visualize test structure
and make bulk modifications. A key innovation in CoTester
is its ability to automatically identify these subroutines us-
ing a machine learning algorithm. Our algorithm is able to
achieve 91% accuracy at recognizing a set of 7 representa-
tive subroutines commonly found in test scripts.

ACM Classification Keywords
H.3.3 Information Systems: Search and Retrieval; H.5.2 In-
formation Interfaces and Presentation: User Interfaces

General Terms
Algorithms, Design, Human Factors, Experimentation

Author Keywords
Website Testing, Test Script, Instruction, Subroutine

INTRODUCTION
The web has become an indispensible part of our daily ac-
tivities. As more and more applications move to the web,
there is a growing need for tools to assist with web applica-
tion development and testing. However, today’s web testing
tools, such as Rational’s Functional Tester [3] and HP’s Mer-
cury [2], present several barriers to use. First, they require
programming ability: tests are recorded in programming lan-
guages such as Java or Visual Basic. Second, maintaining a
corpus of tests can be time-consuming, particularly during
iterative development as applications change and tests need
to be kept in sync. As a result of these barriers, testing tools
are not as widely used as they could be.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI 2010, February 7 - 10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

CoTester, which is built on the CoScripter [17, 16] platform,
provides testers with features specifically targeted at func-
tional web testing, including test management and support
for assertions. By applying CoScripter’s easy-to-understand
scripting language (ClearScript) to the domain of web test-
ing, CoTester enables testers with a wide variety of skill lev-
els to create and maintain test scripts. CoTester extends the
ClearScript language with support for assertions [18], which
are an important aspect of functional testing.

Once a set of tests has been created, they may need to be
updated frequently as the application under test (e.g., a web-
site) changes. Updating tests may require much manual ef-
fort by testers, who have to manually inspect each test and
make the required changes to update it for the new appli-
cation. Global search and update is typically not sufficient
in these cases. For example, a web application may change
its checkout process such that a new checkbox “notify by
email” is added to the checkout page. If the checkout pro-
cess could be automatically identified, a tester would be able
to easily add an assertion to test the presence of this check-
box across all instances of this process. As another example,
a tester may want to add an assertion after the login process
to check that a user has successfully logged in to the website.
This can not be done automatically unless the login process
is identified from the test scripts.

Subroutines group together a sequence of low-level actions
within a test (e.g., entering a username, entering a pass-
word, and clicking on a “Sign in” button) into a conceptual
unit representing a higher-level action, such as “Log in to
the website”. They enable better test management and help
testers visualize test structure. For example, Figure 2 shows
the subroutines identified from the scripts in Figure 1. Sub-
routines have the promise to make test maintenance easier
by enabling testers to automatically apply a similar change
to all instances of a subroutine across all test scripts. For
example, the instruction check the “notify by email” check-
box in a checkout subroutine could be added automatically
across all the test scripts which have a checkout process. In
addition, assertions [18] could be automatically added to the
start/end of each subroutine to ensure that certain conditions
hold before/after every instance of the subroutine (e.g., as-
serting that the user’s name is displayed on the page after a
login has been completed, asserting that a radiobutton “de-
livery method” is present before the checkout).

169

Figure 1. Example test scripts for two tasks on southwest.com

To help testers maintain large corpora of test scripts, we have
designed and implemented a machine learning algorithm to
automatically identify subroutines in test scripts. Using apri-
ori labelled samples of subroutines collected from a num-
ber of scripts, we learn models of subroutines. Such models
are used to automatically recognize subroutines within a test
script.

In this paper, we make the following contributions:

• An implemented system, CoTester, which builds on Co-
Scripter [17, 16] to provide a lightweight, easy-to-use sys-
tem for web test automation.

• Extensions to the ClearScript language for representing
assertions, which are fundamental for functional testing.

• A machine learning algorithm for automatic subroutine
identification from test scripts.

• An empirical evaluation of our algorithm, showing that
it is capable of recognizing a set of 7 subroutines with
91% accuracy when the algorithm is trained and tested on
scripts recorded from the same website.

RELATED WORK
Here we present prior work related to our contributions.

Website Testing Tools
There are a number of commercial and open source tools
available which assist in the automation of web testing [3,
21, 1]. Most of the commercial testing tools (e.g., SilkTest
[1], Rational Functional Tester (RFT) [3]) are made for web-
site developers and testers with programming knowledge.
For example, SilkTest [1], developed by Borland Software,
uses the proprietary 4Test language for automation scripting.
Rational Functional Tester (RFT) [3] records test scripts in
the Java language. HP’s QuickTest [2] records test scripts

Figure 2. Subroutine identified from scripts in Figure 1. Instructions
grouped together as a subroutine are shown as right indented under
the subroutine.

written in the Visual Basic language. Other functional test-
ing tools include Selenium [21], Sahi [19], Concordian [7].

However, test scripts recorded by these tools require some
amount of programming knowledge to be able to understand
and edit them. In contrast, by leveraging CoScripter’s [17,
16] easily understandable scripting language, CoTester en-
ables testers without programming ability to create and edit
test scripts. In addition, CoTester can improve test script
maintanence by identifying the subroutines from test scripts.
Most often developers do not use functional testing until the
application is mostly complete, since the application changes
too often during the development phase. Subroutine detec-
tion could improve test script maintanence during such a
phase and thus enable testing during the iterative develop-
ment of an application.

End User Programming and Task Learning
Subroutine identification from test scripts is related to re-
search on programming by demonstration [8, 15], and task
learning [4, 5, 6, 13, 10, 22, 12].

Programming by demonstration [8, 15] allows users to con-
struct a program by simply performing actions in the user
interface, with which they are already familiar. For exam-
ple, Eager is a PBD system that observes a user executing a
task one or more times and then infers a general procedure to
do the task [8]. However, it assumes a fixed structure of the
task (fixed number of steps, e.g., steps to fill out a form) and
can generalize only if the user repeats the steps (e.g., a user
may demonstrate the same sequence of steps multiple times
and the system infers a general procedure). PBD trace gen-
eralization using a machine learning technique is described
by Lau and Weld [15]. However, such generalization also
learns a single pattern within a task and can not learn vari-
ability of the structure of the task, e.g., different ways of
doing a checkout in an e-commerce website, different ways
of adding an item to a shopping cart. In contrast, subrou-
tine learning learns conceptual units from already existing
executable scripts. It does n’t assume any fixed structure of
the subroutine and can learn variance of the structure (i.e.

170

Figure 3. Testing using CoTester - (a) A webpage (b) Test script (c) CoTester sidebar (d) CoTester shared repository

sequence of instructions) of a subroutine from its instances
collected from a number of test scripts. In addition, sub-
routine identification can identify one or more instances of
subroutines from a test script, which is in contrast to PBD
systems that can detect only one task at a time.

Task learning systems learn task models from users’ exam-
ples. Huffman et al. illustrate how an intelligent agent can
be taught to perform tasks [12]. Tailor [5] enables users to
modify task information through instruction. A framework
for learning hierarchical models of web service procedures
is described in [6]. Sheepdog [13] learns procedures by
demonstration by watching multiple experts performing the
same procedure across different conditions. PLOW [4] is a
collaborative task learning system that learns task models by
demonstration, explanation, and dialog. Lapdog [10] learns
procedures in emails from one or more examples. Spaulding
et al. describe a task learning system that learns executable
procedures from user demonstration and instruction [22].

Subroutine identification from test scripts is different from
all of the above mentioned research in the following ways.
First, task learning systems learn executable tasks from users
actions. Their goal is to automate such tasks. Most of them
use special semantics of a task (e.g., precondition, postcon-
dition) to learn the task models. In contrast, we learn con-
ceptual units from already existing executable scripts to help
testers visualize test structure and maintain test scripts. In
addition, learning subroutines does not use the above men-
tioned special semantics. Second, most of the task learning
systems require a lot of human interaction and language-rich
demonstration from users as part of the learning process. In
contrast, we try to minimize the amount of information user
has to provide during the learning process.

However, the fundamental difference between our work and
all of the above mentioned research is that subroutine identi-

fication from test scripts is focused on improving test script
maintanence which is not the goal of the existing task learn-
ing systems. To the best of our knowledge, there is no prior
research that automatically identifies such subroutines from
scripts.

THE COTESTER SYSTEM
CoTester is built on top of CoScripter [17, 16] and allows
testers to create test scripts that are represented in the Clear-
Script language, an easy-to-understand scripting language.
To better support testing, we have extended the original Clear-
Script language used in CoScripter with assertions, which
are used to test the presence or absence of elements on the
page and are fundamental for functional testing. Table 1
shows examples of CoTester assertions.

Figure 3 illustrates a high level picture of the CoTester sys-
tem. Figure 3 (a) shows the homepage of “www.southwest.-
com”. The example test script of the picture is recorded from
this website. The recording of such a script is done by doing
actions on web pages, and generating an instruction for each
of them (Figure 3 (b)). As users interact with the browser
performing a process, CoTester records all the forms filled,
links and buttons clicked, and generates instructions for each
action. In addition, users can also insert assertions in a test
script, and edit instructions. Assertions can be inserted in
the following ways: i) manually editing the script, or ii) us-
ing our interface as illustrated in Figure 4. In Figure 4, a user
first clicks the assert toolbar button of the sidebar. When the
user is in assertion mode and moves the mouse pointer over
a web page element, our system highlights that element by
showing a red rectangle surrounding it. The user can click
the highlighted element to insert an assertion. Therefore,
highlighting and clicking “Manage Your Travel” inserts an
assertion for this text in the script.

171

Type Example
Presence of an Object assert there is a link

assert there is a button
assert there is a checkbox

Absense of an Object assert there is no link
assert there is no radiobutton

assert there is no listbox
Presence of an Object with a Caption assert there is a “southwest” link

assert there is a “go” button
Absense of an Object with a Caption assert there is no “address” textbox

assert there is no “Image Search” link
Presence of an Object with a Caption and a Value assert there is a text “san jose” into the “city” textbox
Absense of an Object with a Caption and a Value assert there is no “CA” into the “state” listbox

Presense of a Text assert there is a td that contains “Please enter”
assert there is a div that starts with “Almaden”

assert there is an element that ends with “Click here”
Absense of a Text assert there is no element that contains “Pay bill”

Table 1. CoTester Assertions

The CoTester user interface allows saving the recorded script
in a centralized shared repository where a community of
users can share, run and collaboratively develop test scripts
(Figure 3 (d)). It also allows easy management of test scripts
(Figure 3 (c)). Users can tag test scripts in the shared repos-
itory and select the scripts tagged by them, or anyone. They
can run a single test script, or a batch of scripts. When a
script is executed, each instruction (either assertion or regu-
lar instruction) is parsed and the Document Object Model [9]
of the web page is analyzed to find the desired element. In
case of a successful match of the element, the system high-
lights the matched element on the web page, and executes
the instruction. However, in case of a non-match, the in-
struction is not executed and the test fails. If all such in-
structions are successful, we say that the result of the test is
a “Success”. Otherwise, it is a “Failure”. When a test fails,
the system outputs the reason for the failure (e.g., could not
find the element with label “Place Order”). Figure 5 shows
the output of CoTester after a set of test scripts has been exe-
cuted. After a batch of scripts have been run, users can save
the test report as a spreadsheet (see Figure 6). In the next
section, we will describe how subroutines from test scripts
are identified.

SUBROUTINE IDENTIFICATION FROM TEST SCRIPTS
Once a set of tests has been created, they may need to be
updated frequently as the website changes. To reduce the
manual effort to update test scripts, we have designed and
implemented a machine learning algortihm to identify sub-
routines from test scripts. Our algorithm could make test
maintenance easier by enabling testers to automatically ap-
ply a similar change to all instances of a subroutine across
all test scripts. In this section, we describe our subroutine
identification algorithm. First, we discuss a few preliminary
concepts.

Technical Preliminaries
The Vector Space Model (VSM) is widely used in Informa-
tion Retrieval systems for document retrieval [20]. In this
model, a document is represented as a vector, where each di-
mension corresponds to a separate term. Typically terms are
single words, bigrams, trigrams, or even longer text strings.

Figure 4. Inserting assertions to scripts using CoTester interface

Figure 5. Test Management using CoTester

172

Figure 6. An example test report saved by CoTester

Each term appearing in the document is assigned a non-
negative weight. One popular weighting scheme is TF*IDF
[20]. It uses the following expression to assign weights:

wt,d = tft · log
|D|

|{t ∈ d}| (1)

In the expression, wt,d is the weight of term t in document d;
tft is the term frequency of term t in document d; |D| is the
total number of documents; log |D|

|{t∈d}| is the inverse docu-
ment frequency; |{t ∈ d}| is the total number of documents
containing the term t.

Suppose 1, 2, .., N denote the terms of a document d. Then
the weighted document vector vd for d is:

vd = [w1,d, w2,d, . . . , wN,d] (2)

We use cosine similarity to measure the degree of “semantic
closeness” between the two vectors. Given a query vector vq ,
the cosine of the angle between this vector and a document
vector d is the expression:

cos θ =
vq · vd

‖vq‖ ‖vd‖ (3)

A value of 1 means the vectors are identical, and it is 0 if they
are orthogonal. Two vectors are considered to be similar if
their cosine similarity is above some set threshold.

We introduce the notion of an Instruction-Class, which is
a class of similar instructions in test scripts and members
of which perform similar functions across tests (e.g., enter-
ing a password into a textbox in a login form). We map
each instruction ij in a script to an Instruction-Class IC(ij).
For example, the instruction enter “12345” into the second
textbox is different from the instruction enter “xyzabc” into
the “Password” textbox. However, both of them indicate en-
tering password into a textbox. Since they are similar, we
would like them to be mapped to the same Instruction-Class.
For simplicity, we will denote IC(ij) as lj throughout the
paper.

Figure 7. High level overview of the algorithm

Overview of the Proposed Approach
The goal of subroutine identification is to automatically iden-
tify subroutines contained within a repository of scripts. We
assume that a user has previously labeled several instances
of each desired subroutine within a separate training reposi-
tory. Let S denote the set of such labelled subroutines. The
goal of the algorithm is to recognize instances of these sub-
routines within the unlabeled scripts in the main repository.
Figure 7 illustrates the high level overview of our algorithm.

Each labeled subroutine consists of a sequence of instruc-
tions. Our algorithm works as follows. First, each instruc-
tion is mapped to an Instruction-Class. Second, sequences of
Instruction-Classes which are labeled as being instances of
the same subroutine are used to train the subroutine model.
The output of this step is the set of subroutine models, M .
Finally, given an unlabeled script U , which may contain sub-
routines, all possible subsequences of instructions in that
script are examined and compared against each of the sub-
routine models. If a match is found, the algorithm concludes
that the matching instruction sequence is an instance of the
matching subroutine. The output of this process is the script
T , which is segmented into subroutines. The next subsec-
tions describe each of the components of this algorithm in
detail.

Mapping Instructions to Instruction-Classes
Given a set of instructions I = {i1, i2, } and a set of
Instruction-Classes IC = {l1, l2,}, each instruction ij is
mapped to the Instruction-Class in IC to which it is most
similar.

This is a clustering problem where each Instruction-Class is

173

a cluster. Such clusters are constructed from instructions in
scripts. Features of the instruction are action type, object
type, words and word combinations (unigrams, bigrams, tri-
grams) from object label. We represent these instructions as
vectors. Features of the instruction become the terms of the
vector representing that instruction.

We use the parser described by Lau et al. [14] to parse the
instructions and identify the type of action, type of the ob-
ject, object label and value. For example, the instruction
click the “add to cart” button is parsed into the following
information:

• Action Type: click

• Object Type: button

• Object Label: “add to cart”

The features of this instruction are the following: (click, but-
ton, “add”, “cart”, “add to”, “to cart”, “add to cart”). Here,
words and word combinations (bigrams, trigrams) are com-
puted from the object label. These features become the terms
of the vector representing the instruction. The vector which
represents this instruction is: <click, button, “add”, “cart”,
“add to”, “to cart”, “add to cart”>. These terms are weighted
using a TF*IDF weighting scheme. If the action type of an
instruction is “assert”, we do not add the “assert” keyword to
the vector representing that instruction. This is to ensure that
an assertion can be considered to be similar to any other in-
struction that acts on similar objects. Thus, the vector which
represents assert there is a “add to cart” button is: <button,
“add”, “cart”, “add to”, “to cart”, “add to cart”>.

To compute similarity of an instruction to an Instruction-
Class, we do the following:

• If the action type of the instruction is not “assert” and
is different from the action type of the Instruction-Class,
then the instruction is not similar to the Instruction-Class.
Thus, the instruction click the “username” textbox is not
similar to the instruction enter name into the “username”
textbox.

• Otherwise, we compute a cosine similarity score between
the vectors computed from the instruction and the Instruct-
ion-Class. If this is above the cosine similarity thresh-
old of clustering (determined experimentally), then the
instruction is considered to be similar to the Instruction-
Class.

Each instruction is assigned to the Instruction-Class to which
it is most similar. When an instruction is assigned to an
Instruction-Class, we update the terms of the correspond-
ing vector with the terms of the instruction and adjust the
TF*IDF score of the Instruction-Class vectors. However, it
is possible that an instruction may not be assigned to any
Instruction-Class (i.e. the cosine similarity is below the thresh-
old for every Instruction-Class or the set of Instruction-Classes
is empty). In that case, we create a new Instruction-Class
from that instruction.

Figure 8. Mapping instructions to Instruction-Classes

Figure 9. Training “Login” subroutine vector

174

Let us illustrate the algorithm with the instructions for the
“Login” subroutine as illustrated in Figure 2 (a) and (b). Ini-
tially the set of Instruction-Classes is empty. Therefore, we
create an Instruction-Class vector from the terms of the first
instruction i1 and assign a machine-generated identifier (l1)
to that Instruction-Class. The term vector of the next instruc-
tion i2 is compared with the term vector of this Instruction-
Class. But the similarity value is below the threshold. As
a result we create another Instruction-Class vector from the
terms of that instruction and assign it an identifier (l2). Simi-
larly, Instruction-Class vectors are created from the next four
instructions and assigned machine generated identifiers (l3,
l4, l5, l6).

The first instruction of the “Login” subroutine in Figure 2
(b) is found to be similar to the first Instruction-Class. As a
result, we add the terms of that instruction to the Instruction-
Class vector. The next instruction i8 is found to be similar to
the second instruction class l2, and the terms of this instruc-
tion is added to the Instruction-Class vector. The next two
instructions are found to be similar to the third Instruction-
Class and the final two instructions are found to be similar
to the fifth and sixth Instruction-Classes. Figure 8 shows the
Instruction-Class labels constructed from these instructions.

Training Subroutine Models
Training a subroutine model1 consists of constructing a vec-
tor for that subroutine from the labelled instances collected
from test scripts. For each subroutine instance, we iden-
tify the Instruction-Class from each of the instructions. We
construct the terms of the subroutine vector from the re-
sulting Instruction-Class sequences. Given a sequence of
Instruction-Classes l1.l2.l3 labelled as an instance of subrou-
tine S, the term of the subroutine vector VS is the sequence
l1.l2.l3. Note that terms are typically words and word com-
binations in a vector space model. However, in our repre-
sentation, each term of the subroutine vector is a sequence
of Instruction-Class labels.

Figure 9 shows how a subroutine vector is constructed from
labelled instances of the “Login” subroutine collected from
the scripts shown in Figure 1. Two labelled instances of the
“Login” subroutine are given as examples. The instructions
from each subroutine are mapped to Instruction-Classes. As
a result, an Instruction-Class sequence is retrieved from each
subroutine instance. For example, the sequence l1.l2.l3.l4.l5.-
l6 is retrieved for the first subroutine. This sequence be-
comes a term of the “Login” subroutine vector. Similarly,
the sequence l1.l2.l3.l3.l5.l6 becomes another term of the
“Login” subroutine vector. We weight each such term us-
ing a standard TF*IDF weighting scheme (which computes a
weight using the frequency of this sequence in this particular
subroutine vector and all the other subroutine vectors). For
lack of space, Figure 9 does not show the other subroutine
vectors (e.g., a “Checkout” subroutine vector) constructed
from the scripts recorded from that website.

1 In this paper, we use the terms subroutine vector and subroutine
model interchangeably.

Figure 10. Subroutine Identification

Subroutine Identification
Trained subroutine models are then used to identify unla-
balled instances of subroutines. To determine whether a
sequence of instructions in a test script is an instance of a
learned subroutine, we do the following:

First, we identify the Instruction-Class for each of the in-
structions. Next, we construct a term from the resulting
Instruction-Class sequence and build a vector with that term.
Then, we compute the cosine similarity of this vector with
each of the trained subroutine vectors. If the similarity score
between them is above the cosine similarity threshold for
subroutine identification (determined experimentally), the se-
quence of instructions is identified as an instance of that sub-
routine. If the sequence is identified as an instance of mul-
tiple subroutines (i.e. cosine similarity is above the thresh-
olds for multiple subroutine vectors), then the highest scor-
ing vector is picked as the final classification.

However, we modify the definition of cosine similarity in
order to capture the variability of instruction sequences of
a subroutine. The usual cosine similarity measure considers
two terms in a vector to be equal iff they are exactly identical.
We extend this and consider two terms to be equal iff any of
the following conditions are satisfied:

• The terms are identical.

• One of the terms is a generalization of the other term.

175

• One of the terms is a partial match of the other term.

To compute whether a term (i.e. the Instruction-Class se-
quence) is a generalization of another term, we remove any
repeated subsequence from it, and see whether this is iden-
tical to the other one. For example, removing the repeated
occurances of l4 from the term l1.l2.l3.l4.l4.l5 makes it iden-
tical to the term l1.l2.l3.l4.l5.

To compute whether a term (i.e. the Instruction-Class se-
quence) partially matches another term, we compute the edit
distance [11] between them, normalize the edit distance by
the length of the larger term and conclude a partial match if
the normalized distance is below the threshold set for edit
distance (determined experimentally). For example, the edit
distance between the terms l1.l2.l2.l3.l5 and l1.l2.l3.l4.l5 is 2.
The normalized value is 0.4 which is below the edit distance
threshold 0.5. Hence this is a partial match.

Figure 10 (a) and (b) illustrate subroutine identification. For
Figure 10 (a), the first sequence of instructions is identified
as an instance of the “Login” subroutine. In Figure 10 (b),
the first sequence is identified as “UpdateCart”, the third se-
qunence is identified as “Checkout” and the second sequence
is not identified as any of the subroutines.

Segmenting a Script into Subroutines
Given a test script as input, our algorithm can determine the
subroutines from it and segment the entire script into subrou-
tines. It generates consecutive subsequences of instructions
from the script in descending order of the size and identi-
fies whether the subsequences are subroutines. Algorithm
SegmentScript illustrates the high-level abstract pseudo-code.

Algorithm SegmentScript
Input: Script: A Test Script
Input: Models: Trained Models of Subroutines
Output: ScriptWithSubroutines: Script which has Subrou-

tines identified
1. Instructions←Instructions of Script
2. ScriptWithSubroutines←Script
3. for i← 1 to Instructions.Length
4. do for j ← Instructions.Length downto i
5. do CurSeq←Sequence of Instructions from

i to j
6. IdentifySubroutine (CurSeq, Models)
7. if CurSeq is a Subroutine
8. then Label CurSeq as Subroutine
9. Add this Label to Script
10. i←j + 1
11. return ScriptWithSubroutines

Algorithm SegmentScript starts with the largest subsequence,
i.e. the entire script and checks whether this is a subroutine.
In case of a match, it labels the subsequence as a subroutine
and does not check for more subroutines inside it. Other-
wise, it generates subsequences of length n - 1, and checks
for subroutines. If a subroutine is found, it labels the subse-
quence with the subroutine name and checks for more sub-
routines outside the subsequence. Otherwise, the algorithm

Figure 11. Test scripts segmented into subroutines

generates smaller subsequences (n - 2, n - 3, ..., 2, 1) and
checks for subroutines.

For example, Figure 11 shows a test script segmented into
subroutines.

EVALUATION
We present the experiments we have done to evaluate the
subroutine identification feature of CoTester and a prelimi-
nary lab study that illustrates the value of the system.

Dataset
We used 70 scripts recorded from 12 websites for our experi-
ments. They were recorded by active users of the CoScripter
system [16]. We manually identified 144 subroutines from
the scripts. Table 2 shows the experimental dataset. The first
column of this table shows the websites, the second column
shows the total number of scripts (in our dataset) which were
recorded from that website, the third column shows the num-
ber of subroutines manually identified from those scripts, the
fourth column shows the training set, and the final column
shows the testing set. Each comma-seperated item in these
sets specifies a subroutine and its number of instances in the
set.

Baseline Algorithm
We wanted to justify our use of Instruction-Class sequences
as terms of the subroutine vector. To do that, we also im-
plemented a simpler baseline algorithm, Subroutine-Identifi-
cation-Simple, which ignored the sequences, constructed sub-
routine models using the bag of words from the instructions,
and used only the bag of words from instruction sequences
to identify subroutines.

Performance
Website testers usually create a test suite from scripts record-
ed from a single website. Therefore, we assessed the per-
formance of our algorithm by constructing website-specific
subroutine models. Subroutine identification from scripts

176

Website Scripts Subroutines Training Set Testing Set
Amazon 7 16 Login:2, Add-to-Cart:2, Checkout:2, Search:1 Login:3, Add-to-Cart:2, Checkout:2, Search:2

BN 5 13 Login:2, Search:2, Add-to-Cart:1,Continue:2 Login:2, Search:2, Add-to-Cart:1, Continue:1
OfficeMax 6 15 Search:2, Add-to-Cart:2, Checkout:2, Register:1 Search:2, Add-to-Cart:2, Checkout:2, Regiser:2
Typetees 8 19 Login:3, Search:2, Register:2, Continue:2, Logout:1 Login:2, Search:2, Register: 1, Continue:2, Logout:2
Walmart 7 11 Search:2, Continue:3, Checkout:2 Search:2, Continue:1, Checkout:1

OfficeDepot 5 11 Login:2, Logout:2, Register:1 Login:2, Logout:2, Register:2
CircuitCity 5 10 Add-to-Cart:2, Continue:2, Checkout:1 Add-to-Cart:2, Continue:2, Checkout:1

Bestbuy 4 8 Checkout:2, Register:2 Checkout:2, Register:2
Shop 6 12 Checkout:2, Logout:2, Login:2 Checkout:2, Logout:2, Login:2
Buy 7 10 Login:2, Add-to-Cart:2, Search:2 Login:2, Add-to-Cart:1, Search:1

Threadless 4 9 Add-to-Cart:2, Register:1, Checkout:1 Add-to-Cart:2, Register:2, Checkout:1
Theselectseries 6 10 Search:2, Register:3 Search:2, Register:3

Table 2. Experimental Dataset

across multiple websites is more challenging since instruc-
tions in the scripts may show a lot of variability across web-
sites.

We constructed such subroutine models for each website in
our dataset and tested their performance. We computed how
many subroutines were identified correctly, how many were
identified incorrectly, how many were not identified. From
this computation, we measured recall/precision and F-measu-
re of the learned subroutine models. We averaged these val-
ues across websites. On average, our algorithm achieved
94% precision, 89% recall and 91.8% F-measure for sub-
routine identification.

We compared this performance with that of our baseline al-
gorithm. We found that F-measure performance was 14%
lower for this simpler approach. (see Figure 12, overall F-
measure for the simpler approach is 77.8%). The perfor-
mance differences are statistically significant (two-tailed p
value is less than 0.0001, 95% confidence, t = 6.4920, de-
grees of freedom = 10, standard error of difference = 0.021).
This justifies our use of sequences to identify subroutines.

We were interested to find whether the use of cosine similar-
ity instead of simple equality checking between an instruc-
tion and instruction-class was really needed. Since cosine
similarity with a threshold of 1.0 is equivalent to equality
checking, we varied the cosine similarity threshold of clus-
tering from 0 to 1.0 by an increment of 0.1 and computed the
performance. A cosine similarity threshold of 0.4 for clus-
tering resulted in the highest performance when the other
two thresholds (edit distance threshold and cosine similarity
threshold of subroutine identification) were set to 0.5 (the
performance reported in this paper is for these threshold val-
ues). Performance drops by 12% when the cosine similar-
ity threshold of clustering was set to 1.0 (which is equality
checking), when the other thresholds were 0.5. This per-
formance drop is statistically significant (two-tailed p value
is less than 0.0001, 95% confidence, t = 6.3095, degrees of
freedom = 12, standard error of difference = 0.018). This
justifies the use of cosine similarity instead of simple equal-
ity checking between an instruction and the Instruction-Class.

User Study
We also did a preliminary user study of the system. The
goal of this study was to find whether the easy-to-understand

scripting language and subroutine identification features of
CoTester would be useful to users. 4 users participated in
the study. They were experienced computer users and regu-
larly browse the web. 3 of them had previous web devel-
opment experience. 2 users were familiar with web test-
ing tools and 1 user previously used a web testing tool. We
showed them the user interface of CoTester and some exam-
ple test scripts. We also introduced them to the subroutine
learning feature. Each participant recorded 2 scripts from
an e-commerce website (a total of 4 websites were used in
the study, 1 website per participant) such that each script
contained at least the following subroutines: “Login”, “Add-
to-Cart”, “Checkout”. They also added assertions to each
of the scripts in two ways: i) using the graphical user inter-
face ii) manually editing the scripts. Participants mentioned
that they would prefer the first approach to insert assertions.
Then, we used our algorithm to identify the subroutines from
the scripts and showed the modified scripts to the partici-
pants. They noted that subroutines segmented the scripts in
conceptual units, and helped them to better understand the
higher level tasks performed by instructions. They also ran
the scripts in batch mode and saved the test reports. One
of the participants mentioned that our test report should con-
tain information about the subroutine when a failure occured
within that subroutine (e.g., the “Login” button is not found).
This can be a novel benefit of subroutines we did not antic-
ipate. Finally, we asked them to edit the recorded scripts.
They noted that although they had to look at the repository of
other scripts to get the correct syntax of instructions, editing
was quite easy since the scripts were understandable. Over-
all, all of them liked the simple language of the CoTester
system. One of the participants mentioned that she would
like to write test scripts using our system to test her personal
website.

CONCLUSIONS AND FUTURE WORK
We have presented CoTester, a lightweight web testing tool
which can help testers easily create and maintain test scripts.
CoTester’s easy-to-understand scripting language and sub-
routine identification feature can reduce, if not eliminate, the
barrier to web application testing.

There are many possible avenues of future research: First,
CoTester’s assertions check for presence or absence of web
page elements based on textual properties (e.g., caption of a
button). In the future, we would like to add other forms of

177

Figure 12. Subroutine Identification Performance

assertions, e.g., an assertion that can check whether a sub-
mit button is disabled, or an assertion that can perform a
bitmap comparison. Second, the subroutine identification
feature is not yet deployed to functional testers. We like
to deploy this feature to functional testers and see whether
this can improve test script maintenance by enabling them
to automatically apply similar changes to a large corpus of
scripts (bulk modification), when websites change. Towards
that, we will extend the user interface of CoTester with a
bulk modification component, so that testers can select the
scripts or the test suite and specify the desired change (e.g.,
adding an assertion in a login process) and the system can
do the modification in all the matching scripts. Third, we
have trained and tested subroutine models for a few subrou-
tines. In the future, we will train more subroutine models,
conduct thorough experiments with a larger dataset, and ex-
plore the usage of subroutine models trained from multiple
websites. Finally, we will perform a thorough user study of
the deployed system.

ACKNOWLEDGEMENT
We thank Jeffrey Nichols for his insightful comments about
this paper.

REFERENCES
1. Borland SilkTest.

http://www.borland.com/us/products/silk/silktest/.

2. Hp QuickTest Professional. http://www.hp.com.

3. IBM Rational Functional Tester. http://www-
01.ibm.com/software/awdtools/tester/functional/.

4. J. F. Allen, N. Chambers, G. Ferguson, L. Galescu,
H. Jung, M. D. Swift, and W. Taysom. Plow: A
Collaborative Task Learning Agent. In Proc. of AAAI,
2007.

5. J. Blythe. Task Learning by Instruction in Tailor. In
Proc. of the 10th Intl. Conf. on Intelligent user
interfaces, pages 191–198, New York, NY, USA, 2005.
ACM.

6. M. H. Burstein, R. Laddaga, D. McDonald, M. T. Cox,
B. Benyo, P. Robertson, T. Hussain, M. Brinn, and

D. V. McDermott. Poirot - Integrated Learning of Web
Service Procedures. In D. Fox and C. P. Gomes,
editors, AAAI, pages 1274–1279. AAAI Press, 2008.

7. http://www.concordion.org/.

8. A. Cypher. Watch What I Do: Programming by
Demonstration. MIT Press, 1993.

9. http://www.w3.org/DOM/DOMTR.

10. M. Gervasio, T. J. Lee, and S. Eker. Learning Email
Procedures for the Desktop. In AAAI 2008 Workshop on
Enhanced Messaging, Chicago, IL, July 2008.

11. D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, January 1997.

12. S. B. Huffman and J. E. Laird. Flexibly Instructable
Agents. Technical report, Price Waterhouse, 1995.

13. T. Lau, L. Bergman, V. Castelli, and D. Oblinger.
Sheepdog: Learning Procedures for Technical Support.
In Proc. of Intl. Conf. on Intelligent user interfaces,
pages 109–116, 2004.

14. T. Lau, C. Drews, and J. Nichols. Interpreting Written
How-to Instructions. In Proceedings of the
International joint conference on Artificial Intelligence,
2009.

15. T. A. Lau and D. S. Weld. Programming by
Demonstration: An Inductive Learning Formulation. In
Proc. of Intl. Conf. on Intelligent User Interfaces, pages
145–152, 1999.

16. G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating and sharing how-to knowledge
in the enterprise. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 1719–1728, 2008.

17. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber,
and E. Kandogan. Koala: Capture, Share, Automate,
Personalize Business Processes on the Web. In CHI
’07: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 943–946, 2007.

18. D. S. Rosenblum. A Practical Approach to
Programming With Assertions. IEEE Trans. Softw.
Eng., 21(1):19–31, 1995.

19. http://sahi.co.in/w/.

20. G. Salton, A. Wong, and C. S. Yang. A Vector Space
Model for Automatic Indexing. Commun. ACM,
18(11):613–620, 1975.

21. http://seleniumhq.org/.

22. A. Spaulding, J. Blythe, W. Haines, and M. Gervasio.
From Geek to Sleek: Integrating Task Learning Tools
to Support End Users in Real-world Applications. In
IUI ’09: Proceedings of the 13th international
conference on Intelligent user interfaces, pages
389–394, 2009.

178

	Introduction
	Related Work
	Website Testing Tools
	End User Programming and Task Learning

	The CoTester System
	Subroutine Identification from Test Scripts
	Technical Preliminaries
	Overview of the Proposed Approach
	Mapping Instructions to Instruction-Classes
	Training Subroutine Models
	Subroutine Identification
	Segmenting a Script into Subroutines

	Evaluation
	Dataset
	Baseline Algorithm
	Performance
	User Study

	Conclusions and Future Work
	Acknowledgement
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

