
Automated Email Activity Management:
An Unsupervised Learning Approach

Nicholas Kushmerick
University College Dublin, Ireland

nick@ucd.ie

Tessa Lau
IBM T.J. Watson Research Center, USA

tessalau@us.ibm.com

ABSTRACT
Many structured activities are managed by email. For in-
stance, a consumer purchasing an item from an e-commerce
vendor may receive a message confirming the order, a warn-
ing of a delay, and then a shipment notification. Exist-
ing email clients do not understand this structure, forcing
users to manage their activities by sifting through lists of
messages. As a first step to developing email applications
that provide high-level support for structured activities, we
consider the problem of automatically learning an activ-
ity’s structure. We formalize activities as finite-state au-
tomata, where states correspond to the status of the pro-
cess, and transitions represent messages sent between partic-
ipants. We propose several unsupervised machine learning
algorithms in this context, and evaluate them on a collection
of e-commerce email.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Misc.

General Terms
Algorithms, Experimentation, Management

Keywords
Activity management, email, machine learning, text classi-
fication, clustering, automaton induction.

1. INTRODUCTION
Email overload is becoming a critical problem [15]. Studies
have shown that email has evolved from simply a commu-
nications medium to a “habitat”—the primary interface to
one’s workplace, supporting tasks such as activity manage-
ment, meeting scheduling, and file transfer [4]. Yet today’s
email applications are still oriented towards manipulating
individual messages. Though email is increasingly used to
communicate about tasks and activities, today’s clients pro-
vide minimal support for managing those activities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’05, January 10–13, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-58113-894-6/05/0001 ...$5.00.

One important class of email-based activity is participa-
tion in a structured processes or workflows. Many email
messages are a manifestation of a user’s participation in a
business process. For instance, an employee in an organiza-
tion with a centralized hiring process receives automatically-
generated messages reminding her of an upcoming interview,
requesting feedback on the candidate after the interview,
and notifying her of the final decision. A manager receives
a series of messages when his employee requests a new com-
puter, after the request has been approved by the financial
approver, and when the machine is ready for delivery. A
consumer purchasing an item from an e-commerce vendor
may receive messages that confirm the order, or notification
of a delay or that the items have been shipped.

A single user may be involved with dozens of these ac-
tivities simultaneously. Our goal is to provide a high-level
interface to these types of structured processes, to help users
manage their activities more effectively. We want to enable
users to interact with their activities directly, not simply
their constituent messages. For instance, a consumer should
be able to quickly see how many of her e-commerce trans-
actions are still pending. An employee should be able to
easily see that no decision has been taken regarding hiring
her favored candidate. Some process steps should be auto-
mated, such as sending a reply confirmation to subscribe to
a mailing list.

The first step towards an activity-centric interface for
email is to automatically recognize structured processes in
email, and track the user’s progress through these processes
as new messages arrive.

We assume that a user participates in a variety of dis-
tinct classes of activities (e.g., purchases from amazon.com,
auctions at ebay.com, recruitment activities with the per-
sonnel department, etc.). We formalize activities as finite-
state automata called process models. We create a distinct
process model for each type of activity (e.g., one model for
amazon.com, a second model for ebay.com, a third for the
personnel department, etc).

States in a process model correspond to the internal con-
figuration or status of the process, and email messages cor-
respond to transitions between process states. For example,
an amazon.com purchase might be in an “order submitted”
state; when the order is shipped, the state changes to “done”
and amazon.com sends a message to the purchaser to indi-
cate this transition.

This paper proposes several unsupervised machine learn-
ing algorithms related to this framework. Our empirical
evaluation demonstrates that even without any user super-

Dat e: Fr i , 13 Jun 2003 00: 42: 26 - 0400 (EDT)
Subj ect : Your or der f or Sat ur day, Jun 14

Thank you f or or der i ng f r om us agai n. We wi l l del i ver your f ood bet ween 09: 00
AM and 11: 00 AM on Sat ur day, June 14.

As soon as we sel ect and wei gh your i t ems, we' l l send you an e- mai l wi t h
t he f i nal or der t ot al . We' l l al so i ncl ude an i t emi zed pr i nt ed r ecei pt wi t h
your del i ver y.

I f you have l ast - mi nut e updat es or addi t i ons t o your or der , go t o your
account t o make changes bef or e 09: 00 PM, June 13.

We hope you enj oy ever yt hi ng i n your or der . Pl ease come back soon.
Happy eat i ng!

Fr eshDi r ect Cust omer Ser vi ce Gr oup

ORDER I NFORMATI ON

ORDER NUMBER 68184071

TI ME Sat ur day, June 14 09: 00 AM - 11: 00 AM

ADDRESS 524 W 62ND ST 1A New Yor k, NY
Phone: (212) 123- 4567

DELI VERY I NSTRUCTI ONS 62nd bet ween Br oadway and West End, under t he awni ng

ORDER TOTAL $44. 24*

CREDI T CARD MC # xxxxxxxxxxxx3987

CART DETAI LS

Dai r y
2 Dannon Fr ui t on t he Bot t om Lowf at Bl ueber r y Yogur t – (6oz) ($0. 65/ ea) $1. 30
1 Dannon La Cr eme St r awber r y Yogur t – (4pk) ($1. 69/ ea) $1. 69

...

Est i mat ed Subt ot al : $40. 63*
Del i ver y Fee: $3. 95
Tax: $0. 00
Est i mat ed Or der Tot al : $44. 24*

Dat e: Fr i , 13 Jun 2003 19: 33: 10 - 0400 (EDT)
Subj ect : Your or der i nf or mat i on has been updat ed

We' ve updat ed your or der i nf or mat i on. Pl ease l ook over t he det ai l s bel ow.
I f you' d l i ke t o make f ur t her changes:

ht t p: / / www. f r eshdi r ect . com/ account . j sp

Fr eshDi r ect Cust omer Ser vi ce Gr oup

ORDER I NFORMATI ON

ORDER NUMBER 68184071

TI ME Sat ur day, June 14 09: 00 AM - 11: 00 AM

ADDRESS 524 W 62ND ST 1A New Yor k, NY
Phone: (212) 123- 4567

DELI VERY I NSTRUCTI ONS 62nd bet ween Br oadway and West End, under t he awni ng

ORDER TOTAL $54. 59*

CREDI T CARD MC # xxxxxxxxxxxx3987

CART DETAI LS

Dai r y
2 Dannon Fr ui t on t he Bot t om Lowf at Bl ueber r y Yogur t - (6oz) ($0. 65/ ea) $1. 30
1 Dannon La Cr eme St r awber r y Yogur t – (4pk) ($1. 69/ ea) $1. 69
1 Far ml and 36% Heavy Cr eam - (1 pi nt) ($1. 69/ ea) $1. 69
1 Gr ade A Lar ge Or gani c Br own Eggs – (1 dozen) ($2. 99/ ea) $2. 99
1 St onyf i el d Far m Or gani c Lowf at Pl ai n Yogur t – (32oz) ($2. 39/ ea) $2. 39

...

Est i mat ed Subt ot al : $50. 98*
Del i ver y Fee: $3. 95
Tax: $0. 00
Est i mat ed Or der Tot al : $54. 59*

Dat e: Sat , 14 Jun 2003 08: 14: 01 - 0400 (EDT)
Subj ect : Your or der f or Sat ur day, Jun 14 i s on i t s way

Hel l o agai n! Your or der (#48184071) i s on i t s way t o you. I t wi l l be del i ver ed
bet ween 09: 00 AM and 11: 00 AM on Sat ur day, June 14.

Your f i nal t ot al i s $54. 85. We' l l i ncl ude a pr i nt ed, i t emi zed r ecei pt wi t h
your goods.

Vi ew or der det ai l s onl i ne: ht t p: / / www. f r eshdi r ect . com/ or der _hi st or y. j sp
Thank you f or your or der and happy eat i ng!

Fr eshDi r ect Cust omer Ser vi ce Gr oup

ORDER I NFORMATI ON

ORDER NUMBER 68184071

TI ME Sat ur day, June 14 09: 00 AM - 11: 00 AM

ADDRESS 324 W 62ND ST 1A New Yor k, NY
Phone: (212) 123- 4567

DELI VERY I NSTRUCTI ONS 62nd bet ween Br oadway and West End, under t he awni ng

ORDER TOTAL $54. 85

CREDI T CARD MC # xxxxxxxxxxxx3987

CART DETAI LS

Dai r y
2/ 2 Dannon Fr ui t on t he Bot t om Lowf at Bl ueber r y Yogur t (6oz)

UNI T PRI CE: ($0. 65/ ea) FI NAL PRI CE: $1. 30
1/ 1 Dannon La Cr eme St r awber r y Yogur t – (4pk)

UNI T PRI CE: ($1. 69/ ea) FI NAL PRI CE: $1. 69
...

Subt ot al () : $51. 24
Tax () : $0. 00
Del i ver y Char ge: $3. 95
Cr edi t s: ($0. 34)
Or der Tot al : $54. 85

(a) (b) (c)

Figure 1: A transaction from the grocery store freshdirect.com contains messages that confirm (a) the initial
order; (b) a modification to the order; and (c) delivery. (Messages have been anonymized and abbreviated.)

vision or labeled training data, our system is able to identify
the correct state for 91% of the messages.

Before proceeding, we note that our approach is motivated
primarily by either legacy or decentralized scenarios. If a
process is controlled by a reconfigurable centralized work-
flow system, then clearly many of the challenges we address
can be eliminated by modifying the system to, for example,
embed machine-readable metadata in email headers. How-
ever, in many scenarios, the automated process components
cannot be modified, either because they rely on legacy code
whose modification is infeasible, or because the participants
do not have access to these components.

The remainder of this paper is organized as follows. First,
we describe the corpus of e-commerce transactions that we
use to motivate our research and evaluate our results. We
then describe four specific subproblems that form our core
technical contribution. We then describe our approach and
empirical results for each of the four subproblems. Finally,
we discuss related work and opportunities for future work.

2. E-COMMERCE CORPUS
As a detailed case-study, we have investigated email activity
management in the context of e-commerce transactions. We
gathered a set of messages relating to a number of transac-
tions with several retail e-commerce vendors. We then hand-
labeled these messages to create a “gold standard” against
which our algorithms are evaluated.

Our corpus contains messages from six vendors: half.com,
eddiebauer.com., ebay.com, freshdirect.com, amazon.com and
petfooddirect.com. Our corpus contains 111 messages relat-
ing to 39 transactions. As a concrete example, Fig. 1 shows
an example transaction from freshdirect.com.

Our corpus does not contain a large number of transac-
tions, but this as an asset, not a liability. Our goal is to de-
velop technology that can be deployed to ordinary people’s
desktops, so we want to ensure that our learning algorithms
are effective with only modest amounts of training data.

In addition to the messages, the annotation procedure in-
volved creating a process model for each vendor. We pre-
cisely define such a model below, but for now, note that a

process model consists of a set of states and a set of tran-
sitions between them, where messages are associated with
state transitions. On average, each hand-crafted model con-
tains 3.3 states and 4.3 edges. Fig. 2 shows freshdirect.com’s
hand-crafted process model. For example, message (a) from
Fig. 1 corresponds to the edge from “start” to “orderplaced”.

3. PROBLEM FORMULATION
As shown in Fig. 3, our work on addressing the general prob-
lem of automated activity management of e-mail workflows
is focused on four distinct subproblems.

• Task 1: Activity identification is the task of par-
titioning a set of messages according to the activi-
ties with which they are associated. For example, in
our experiments, activities corresponds to e-commerce
transactions; from the dozens of messages received from
freshdirect.com, the three messages in Fig. 1 would be
identified as relating to the same transaction. Note
that our unsupervised algorithm is not provided train-
ing data such as a sample message from each activity,
or the total number of activities to be discovered.

• Task 2: Transition identification is the task of
partitioning a set of messages according to which pro-
cess model transition they correspond. For example,
the algorithm would partition the freshdirect.com mes-
sages into those relating to order confirmation, order
modification, etc. As with activity identification, our
algorithm is given no training data.

• Task 3: Automaton induction is the task of auto-
matically generating the process model. For example,
given a few activities such as Fig. 1, the task is to
derive the model in Fig. 2.

• Task 4: Message classification is the task of assign-
ing a incoming message to its transition. For example,
given the model in Fig. 2, the classification task is to
assign message Fig. 1(a) to the edge from “start” to
“orderplaced”, etc.

order
placed

start

done

trigger: customer places
order via Web site

message: “Thank you for
ordering from FreshDirect
again…”

example: Fig. 1(a)

trigger: order shipped

message: “Hello again!
Your order (#ID) is on its
way to you.”

example: Fig. 1(c)

trigger: customer modifies
order via Web site

message: “We’ve updated
your order information.”

example: Fig. 1(b)

problem

trigger: customer complains

message: complaint message

trigger: company deals
with complaint

message: apology/resolution
message

Figure 2: The process model for freshdirect.com.

messages M m1

m2

m3 m4

m5

activities A

transitions T m1

m2

m3 m4

m5

m1

m2

m3 m4

m5

Task 2:
Transition Identification

P

Q

R
mnew

Task 4:
Message

Classification

…

process model P
P Q

R

Task 3:
Automaton Induction

Task 1:
Activity Identification

Figure 3: The four subproblems.

4. TASK 1: ACTIVITY IDENTIFICATION
The first task is to partition a set of messages relating to a
single vendor into subsets, each of which represents a distinct
activity. In our e-commerce scenario, the task would be to
partition the messages according to their transaction. This
task is complicated because transactions with a given vendor
may overlap chronologically, and because activities (unlike
normal email threads) usually do not have related Subject
or Message-ID headers.

§ Approach. Fortunately, we find that most transactions
are uniquely identified by some kind of alphanumeric code.
For example, every Amazon purchase is assigned a distinct
identifier such as “058-8847140-7311537”. There are two
challenges to exploiting this regularity. First, most messages
contain a large number of alphanumeric tokens in addition
to the actual unique identifier, but to scale to a large number
of vendors we can’t afford a hand-crafted pattern for recog-
nizing each vendor’s identifiers. Second, we have observed
that some messages relating to a given activity do not in
fact contain its unique identifier.

We address these challenges as follows. We use a rather
generic regular expression for identifying plausible unique

algorithm IdentifyActivities
input: set M of messages for a given vendor
output: set A of activities (a partition of M)
3 step 1: incremental merge
sort M chronologically
A ← {} 3 list of discovered activities
a ← {} 3 current activity
while M 6= {}

if a = {} then 3 start of a new activity
remove the first message m from M
a ← {m}

else
if ∃ m in the 1st K entries of M such that“

U(m) ∩
T

m′∈a
U(m′)

”
6= {} then

remove m from M 3 extend current activity
add m to a

else
add a to A; a ← {} 3 end of current activity

add a to A 3 don’t forget final activity
3 step 2 (optional): merge singletons
calculate µ and σ from the intervals between messages in A
for each a ∈ A such that |a| = 1

let m be a’s message, a′ be the activity prior to a, and i be
the interval between m and the closest message in a′

if i < µ + ασ then
merge a and a′, and remove a from A

return A

Figure 4: IdentifyActivities: The algorithm for parti-
tioning a vendor’s messages into activities.

identifiers in each message; essentially we look for all se-
quences of alphanumeric characters, and then discard ob-
vious mistakes such as dates and telephone or credit card
numbers. The notation U(m) indicates the result of ap-
plying this regular expression to m and filtering out these
mistakes. The intent is that U(m) will contain m’s correct
unique identifier, possibly with additional false positives.

To identify the activities, we first sort the messages chrono-
logically, and then segment them into activities by repeat-
edly selecting the next unclaimed message, and combining
it with other messages sharing a unique identifier. We allow
for activities to overlap by at most K messages. Decreas-
ing K might split some activities, while increasing K might
merge some distinct activities. Our experimental results be-
low confirm this predicted tradeoff.

The final step is to deal with the fact that some messages
do not contain their activity’s transaction identifier. The
result is that we often get a set of activities that are correct
except that these “orphan” messages are not clustered with
their activity.

We solve this problem as follows. After generating a pre-
liminary set of activities, we compute the mean µ and stan-
dard deviation σ of the interval between messages across
these preliminary activities. We then merge an orphan with
the previous activity if it is “close enough”, which is defined
to mean that the interval between the orphan and the ac-
tivity is at most β standard deviations above the mean (i.e.,
at most µ + βσ). In our experiments, we set β = 1.

The algorithm is described in detail in Fig. 4.

§ Evaluation. We evaluate the accuracy of IdentifyAc-
tivities by comparing its predicted partitions to the hand-
crafted partitions described earlier.

To compare two partitions, we use the definition of pre-
cision and recall proposed by [7]. Each pair of messages
in the predicted partition is allocated to one of four cate-
gories: a, clustered together (and should have been clustered
together); b, not clustered together (but should have been
clustered together); c, incorrectly clustered together; and d,
correctly not clustered together. Precision is then computed
as p = a/(a+c), recall is r = a/(a+b), and F1 = 2pr/(p+r)

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14

F1

maximum ovelap K

with singleton merging

3

3
3

3
3 3 3 3

3 3 3

3 3 3 3

3
without singleton merging

+

+ + + + + + +
+ + +

+ + + +

+

Figure 5: Evaluation of IdentifyActivities: F1 as a
function of the maximum overlap parameter K, with
and without singleton merging.

is the harmonic mean of precision and recall. F1 is always
between 0 and 1, with 1 indicating a perfect clustering.

Fig. 5 shows the results for the e-commerce corpus. We
plot F1 as a function of the maximum overlap parameter K,
with and without singleton merging. We see that singleton
merging generally improves accuracy. For the remaining ex-
periments we set K = 5. (While K = 5 doesn’t maximize
the mean F1, it does maximize the median.)

For several of the vendors, the activity identification pro-
cess involved at most one mistake. For example, one of the
problematic activities involved a response from the vendor
regarding a user’s complaint. Neither the complaint nor the
response contained the transaction identifier. The interval
between the complaint and the response was 92 hours while
the threshold for merging singletons was just µ + ασ = 23
hours, so the algorithm decided it was implausible that the
response belonged to the preceding activity.

5. TASK 2: TRANSITION IDENTIFICATION
The second task is to partition a set of messages relating to
a given vendor according to the transitions between states
of the underlying process model to which they correspond.
In our e-commerce setting, we need to separate messages
in which the vendor acknowledges the order, from messages
announcing that the order has shipped, etc. Note that the
number of state transitions is not provided as input, but
must be automatically discovered.

§ Approach. We treat transition identification as a clus-
tering problem. We first define the distance between every
pair of messages, and then employ a standard clustering al-
gorithm to partition the messages.

Consider the three example messages in Fig. 6: (a) and
(b) correspond to the same state transitions while (c) repre-
sents a different transition. The intent is that the distance
between (a) and (b) should be much smaller than the dis-
tance between (a) and (c).

We measure distance as the negative of the length of the
longest common subsequence (LCSS) between pairs of mes-
sages. For example, the LCSS between (a) and (b) is [Sub-
ject, Thanks, for, ordering, Thank, you, for, your, recent,
order, of, We, ll, notify, you, when, the, order, has, shipped],
which is much longer than the LCSS between (a) and (c).

(a)
Subject: Thanks for

your order
Thank you for your re-
cent order (#123-45Q)
of “Life of Pi”. We’ll no-
tify you when the order
has shipped.

(b)
Subject: Thanks for

your order
Thank you for your re-
cent order (#129-66T)
of “Vamped”. We’ll no-
tify you when the order
has shipped.

(c)
Subject: Your order

has shipped
We’re writing to con-
firm that order #123-
45Q has shipped. We
hope you enjoy “Life of
Pi”. Thanks again!

Figure 6: Messages (a) and (b) correspond to the
same process state transition and have a long LCSS,
while messages (a) and (c) from the same activity
have a short LCSS.

In effect, the LCSS between messages from the same tran-
sition captures the template used to generate these mes-
sages, while the LCSS between messages from the same ac-
tivity will capture details of the specific transaction. Under
the assumption that the template is generally longer than
the activity-specific content, we can use the length of the
LCSS between two messages to estimate the likelihood that
messages are associated with the same transition.

Based on this message distance, we use a standard hi-
erarchical agglomerative clustering algorithm. Initially, we
compute the average distance µ across all pairs of messages,
and create a distinct cluster for each message. The distance
between transition clusters is defined to be the average pair-
wise distance between their messages. We repeatedly merge
the two nearest transitions, stopping when the distance be-
tween the nearest pair exceeds µ.

In fact, this simple approach is inadequate. Recall we as-
sume that the transition’s message templates are generally
longer than the activity-specific content of each message.
In fact, in some cases the activity-specific content can be
very large, so that the LCSS between two messages from
the same activity but different transitions is longer than the
LCSS between messages from the same transition. For in-
stance, the order confirmation and shipment messages from
an e-commerce grocery store may list the dozens of items
purchased.

To solve this problem, we start by never clustering mes-
sages from the same activity. However, this heuristic is too
conservative: it is quite common for an activity to transi-
tion between the same states multiple times. Therefore, we
modify this initial clustering using a revised distance be-
tween messages. We assign scores to terms, and the revised
distance between messages m1 and m2 is the sum of the
score of every term in their LCSS. When m1 and m2 belong
to different activities, this term score is 1—i.e., the distance
for messages in different activities is unchanged.

On the other hand, if m1 and m2 belong to the same ac-
tivity, then the term scores are calculated as follows. First,
a TFIDF-like weight is computed for each term. These
weights are then linearly scaled so that the term with the
highest TFIDF weight is assigned a score of 0, and the term
with the lowest TFIDF weight gets a score of 1. Thus, the
revised distance between messages in the same activity is a
weighted sum of the terms in their LCSS, where terms that
usually occur in the activity get a small weight, while terms
that usually occur outside the activity get a high weight.

Given this revised distance metric, we merge the G most
similar pairs of clusters, where G is a user-specified param-
eter. Increasing G makes it less likely that transitions en-
countered multiple times per activity are split, but it be-
comes more likely that distinct transitions are merged. We

algorithm IdentifyTransitions
input: set M of messages for a given vendor, set A of activities
output: set T of process states transitions (a partition of M)
3 step 1: initial clustering
let d(m1, m2) = −|LCSS(m1, m2)| if messages m1 and m2

are from different activities in A, and d(m1, m2) = ∞
if m1 and m2 are from the same activity

let µ be the average value of d between all pairs of messages,
excluding pairs from the same activity

let T be the result of applying average-link HAC to M with
distance metric d; clustering is terminated when the
distance between merged states exceeds µ

3 step 2: merge states with messages from the same activity
let w(t, a) = TF(t, a) log(|A|/DF(t)) be the weight of term t

in activity a, where TF(t, a) is the number of times that
t occurs in the messages in a, and DF(t) is the number
of activities that contain t

let w′(t, a) = (Z − w(t, a))/(Z − z), where Z = maxt,a w(t, a)
and z = mint,a w(t, a)

let d′(m1, m2) = −
P

t∈LCSS(m1,m2) s(t), where s(t) = 1 if

m1 and m2 are in different activities, and s(t) = w′(t, a) if
m1 and m2 are in the same activity a

repeat G times
let t1 and t2 be the pair of transitions most similar under d′

if d′(t1, t2) < µ then merge t1 and t2
return T

Figure 7: IdentifyTransitions: The algorithm for clus-
tering partitioning a vendor’s message into state
transitions.

do not expect that a user will be able to specify G in ad-
vance. Rather, we envision a user interface that shows the
set of transitions for G = 0, and allows the user to click on
“Merge more/less!” buttons to increase/decrease G.

Fig. 7 shows the transition identification algorithm.

§ Evaluation. We evaluate the accuracy of IdentifyTran-
sitions by comparing its predicted partitions to the hand-
labeled messages described earlier. Recall that the algo-
rithm requires as input the set A of activities. Note that
we do not make the supervised assumption that the correct
activities are known, but rather we use the possibly noisy
activities discovered by IdentifyActivities.

Fig. 8 shows the F1 score of IdentifyTransitions as a func-
tion of the merge count parameter G. The first point to note
is that for five of the six vendors, G can be tuned to give
nearly perfect accuracy (i.e., F1 ≥ 0.8, and in several cases
F1 approaches 1). Next, recall that G roughly corresponds
to the amount of user intervention that is required. For half
the vendors, accuracy is maximized for G = 0 (i.e., with
no user intervention). In the remaining experiments, we fix
G = 0.

We also investigated a technique for automatically ad-
justing the G parameter. We modified the algorithm to
ignore G, and instead use the same termination criteria as
in the initial clustering. Specifically, the algorithm contin-
ues to merge states until the revised distance d′ between the
merged states exceeds the average distance µ. The black
circles in Fig. 8 shows value for G at which the algorithm
terminated in this configuration. In half the cases, this tech-
nique was able to find the optimal value for G.

6. TASK 3: AUTOMATON INDUCTION
The final task is to discover a vendor’s underlying process
model. This model takes the form of a finite-state automa-
ton, where each state corresponds to the vendor’s internal
state, and transitions corresponds to messages sent by the
vendor to indicate state changes.

In more detail, P = (X, s0, F, L, T) is a process model,
where X is the set of states, s0 ∈ X is the initial state,

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

F1

number of user corrections G

half
freshdirect

petfooddirect
eddiebauer

ebay
amazon

u

u

u
u

u

u

Figure 8: Evaluation of IdentifyTransitions: F1 as func-
tion of the merge parameter G, for each vendor. The
black circles indicate the automatically tuned values
of G.

F ⊆ X is the set of final states, L is the set of edge labels,
and T ⊆ X × L×X is the set of transitions. Note that the
learning algorithm is responsible for discovering the correct
number of states.

§ Approach. We treat the task of discovering a process
model as that of learning a regular grammar from positive
examples. Given a set of messages M , which are partitioned
into a set of activities A and a set of transitions T , we first
construct a set of positive examples E. There is one string
sa in E for each activity in a ∈ A. sa contains one symbol
for each message m ∈ a: sa = (t(m1), . . . , t(m|a|)), where
t(m) is a symbol indicating the transition from T with which
m is associated.

In the example shown in Fig. 3, we have

M = {m1, m2, m3, m4, m5},
A = {{m1, m2}, {m3, m4, m5}}, and

T = {{m1, m3}, {m2, m5}, {m4}}.

Therefore,

E = {t(m1)t(m2), t(m3)t(m4)t(m5)} = {PQ, PRQ},

where t(m1) = t(m3) = P is a symbol representing the mes-
sages associated with T ’s first transition, t(m2) = t(m5) =
Q, and t(m4) = R.

Following Gold’s seminal work on learning regular lan-
guages [5], the problem has received substantial attention.
In our experiments, we use Thollard et al’s MDI algorithm
[13] for learning an automaton from positive examples. MDI
has been shown to be effective on a wide range of tasks,
but any grammar inference algorithm could be substituted.
Note that MDI learns a stochastic automaton while our pro-
cess models are deterministic. It would be interesting to
consider stochastic process models, but currently we con-
vert the stochastic automaton into a deterministic one.

§ Evaluation. To measure the effectiveness of our ap-
proach, we must quantify the quality of the learned process
model. To do so, we measure the agreement A between the
learned model and the vendor’s hand-crafted model. Let P
be the learned model and P ′ be the hand-crafted model. The
agreement A(P, P ′) combines of four quantities: a precision-
like measure of the number of predicted transitions that are

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1

F1

MDI parameter α

supervised

3 3 3

3 3

3 3

3

3 3 3

3
unsupervised

+ + +

+ +

+

+ +

+ + +

+

Figure 9: Agreement A of the learned process mod-
els, as a function of MDI’s parameter α, in both
supervised and unsupervised scenarios.

correct, a recall-like measure of the number of correct tran-
sitions that are predicted, and two measures of whether the
initial and final states coincide. See the appendix for details.

Fig. 9 shows the agreement A between the learned and
hand-crafted models, as a function of MDI’s precision pa-
rameter α. The curve labeled supervised indicates that the
automaton was learned from the correct activities and tran-
sitions. The unsupervised curve indicates that the automa-
ton was learned from the set of activities created by Identi-
fyActivities and the set of transitions generated by Identify-
Transitions.

Fig. 9 indicates that the learned models have F1 ≈ 0.8
in the supervised setting and F1 ≈ 0.5 in the unsupervised
setting. In fact, this is overly pessimistic. With the fixed
parameter values, the algorithm does substantially better for
five of the vendors but is highly inaccurate for ebay.com. By
tuning the parameters, it is possible to increase performance
for ebay.com at the expense of performance for the other
vendors. In Fig. 9 we use the fixed set of parameters that
maximizes performance over all six vendors.

As a concrete example, when trying to learn the model
in Fig. 2, the algorithm generates a model with agreement
A = 0.95. The learned model is perfect (no missing states or
edges) except for one spurious edge from “start” to “done”.

7. TASK 4: MESSAGE CLASSIFICATION
Given a process model and an incoming message, the mes-
sage classification task is to decide the transition with which
the message should be associated. We solve this problem us-
ing standard supervised learning techniques.

Specifically, based on a set of state transitions T over some
set of messages M , we train a classifier on M by labeling
each message with its transition from T . While we use a
supervised learning algorithm, our approach is actually un-
supervised: the class labels (i.e., transitions) associated with
the training messages are assigned automatically by the Iden-

tifyTransitions algorithm.
We adopt a straightforward approach to text classifica-

tion: We use a binary feature for every distinct term in the
training corpus; the feature value is 1 for a given message
if it contains the term and 0 otherwise. We do not em-
ploy any term transformation techniques such as stemming,
nor any feature selection. As a learning algorithm, we use

(a) Next state (b) End of activity (c) Message overlap
sup unsup sup unsup sup unsup

repair 92% 92% 94% 94% 92% 86%
ignore 91% 91% 97% 97% 94% 89%

Figure 10: Ability to track each activity, under four
conditions: supervised vs. unsupervised learning,
and scenarios in which the user repairs vs. ignores
incorrect predictions. We report accuracy in pre-
dicting (a) the next state; (b) the end of the activ-
ity; and (c) overlap between with the predicted and
correct transitions’ messages.

Weka’s SMO support vector machine implementation with
the default parameter settings.

8. PUTTING IT ALL TOGETHER
So far, we have described our approaches to the four sub-
problems described earlier. We now describe an experiment
that measures the performance of all four algorithms in an
integrated manner. Recall from the introduction that our
main motivation is to provide a high-level activity-based
view over a set of messages. To estimate the utility of such
a view, we evaluate our ability to track activities as they
unfold.

We use a leave-one-activity-out-at-a-time methodology.
To measure the performance for a given vendor, we select
each of the vendor’s activities in turn, train our algorithms
on the remaining activities, and then measure performance
on the held-out activity. Our performance metrics for the
vendor are averaged over each activity.

For the held-out activity, we measure our ability to predict
the correct state transitions over the course of the activity,
and predict that the activity has completed. Specifically, we
classify each message in turn using the message classification
algorithm. After each message, we compare the state pre-
dicted by our learned process model with the correct state.
After the final message, we determine whether the predicted
state is final in the learned model.

We evaluate our algorithms in four configurations. First,
we compare a supervised scenario in which the correct activ-
ities and transitions are provided as input, and an unsuper-
vised scenario in which the activities are created automati-
cally by IdentifyActivities and the transitions are created by
IdentifyTransitions. Second, we compare an interactive re-
pair scenario in which the user intervenes to correct any
mistaken state predictions over the course of the activity,
and an autonomous ignore scenario in which prediction er-
rors are allowed to accumulate.

Fig. 10 shows three measures of our ability to track the
messages within each activity: (a) the accuracy of predicting
the next state; (b) the fraction of states predicted after the
last message that are in fact final states; and (c) the over-
lap between the messages associated with each predicted
transitions compared to the messages associated with the
correct transition. Measures (a) and (b) indicate how well
the learned process model captures the overall structure of
the activities. We envision a user interface in which a new
message is described by showing messages belonging to the
same transition; (c) essentially measures how accurately we
can retrieve these messages.

Interestingly, the supervised scenario is not substantially
more accurate than the unsupervised scenario. This sug-

gests that even though our learned models might disagree
with the hand-crafted models, they are apparently good
enough for making predictions about the activities. This
helps to explain a second somewhat paradoxical observa-
tion, that user intervention appears to decrease accuracy. If
the user (in this case, the hand-crafted model) structures
the activity in a different way than the learned model, then
it may do more harm than good for the user to intervene.

9. RELATED WORK
Little work has been done in the area of automatically in-
ducing process models from sequences of email messages.
Related work on improving email management falls into sev-
eral categories: better visualization of email structure, task-
centric interfaces on top of email, and machine learning for
email classification.

It has long been recognized that people use email to man-
age ongoing tasks, to-do lists, and reminders, even though
it was originally designed as a communications application
[15, 6]. One approach to help people manage email more
effectively is the ReMail system [10], which explores bet-
ter visualization techniques for displaying message threads,
and uses simple text analysis to extract important dates
and message summaries. These visualization techniques are
complementary to the automated structure induction we de-
scribe in this paper; ideas such as Thread Maps could be
used to display the process models learned by our system.

Others have proposed task-centric user interfaces, such as
Taskmaster [2] and TaskVista [1], which help people orga-
nize email and other online information into task-specific
groupings. However, while these systems group messages
together, they do so only using standard message headers.
Not only does our system infer groupings that are not nec-
essarily part of the same conversational thread, but it also
automatically infers the structure of the underlying task,
which gives a user more information about the relationships
between messages in a task.

Machine learning has been applied to email messages, pri-
marily for the purposes of detecting spam (e.g., [11]), pre-
dicting where to file a message (e.g., [12]), identifying related
messages [9], and processing incoming messages (e.g., [8]).
These efforts treat email as independent messages and ignore
the larger context of email as part of ongoing activities. In
contrast, we have applied machine learning to induce the
structure of the activities with which a user is engaged.

There has been substantial work on the problem of learn-
ing workflow or process models from example execution logs
(e.g., [14]). This work focuses mainly on our third task, in-
ducing the process model. The inputs to our algorithms are
raw messages such as those shown in Fig. 1, and we use text
classification and clustering to attach meaningful labels to
these messages. In contrast, a typical workflow mining sys-
tem assumes these meaningful labels are available directly
from the execution log. On the other hand, the workflow
mining community has focused on learning much more ex-
pressive classes of process models. An important direction
of future work is to replace our simple automatic induction
algorithm with a more sophisticated learner.

10. CONCLUSIONS
Many structured activities are managed by email. Exist-
ing email clients have no understanding of this structure,

forcing users to manage their activities by manually sift-
ing through lists of messages. As an alternative, we envi-
sion email clients that provide high-level support for activity
management. The key idea is that activities should be iden-
tified and managed as entities in their own right. To this
end, we have presented an approach to the problem of au-
tomatically identifying structured activities in email, and
validated our results on a corpus of email messages from an
e-commerce domain.

Specifically, we make the following contributions: (1) We
formalize email-based activities as finite state automata,
where messages represent state transitions; (2) We specify
and describe solutions to several unsupervised learning tasks
in this context: activity identification, transition identifica-
tion, automaton induction, and message classification; and
(3) We provide empirical evidence demonstrating that our
algorithms can learn process models given a small amount
of unlabeled training data, and accurately update a user’s
state in the model as new messages arrive.

There are many directions for future work. We plan to in-
tegrate our algorithms into an existing mail client, and con-
duct user evaluations to determine the effectiveness of our
approach. This integration will also reveal opportunities to
incorporate user feedback into our unsupervised process in
order to improve our system’s usefulness. We also plan to
investigate ways of extending the algorithms to learn pro-
cess models that generalize to multiple vendors, in order to
reduce the amount of training data required for the system
to make useful predictions.

Acknowledgements. This research was sponsored by the
IBM Dublin Software Laboratory’s Center for Advanced
Studies. We thank Catalina Davis, Mark Dredze, Wendy
Kellog, Brian O’Donovan and Jeff Stylos for helpful discus-
sions.

11. REFERENCES
[1] V. Bellotti, B. Dalal, N. Good, P. Flynn, D. Bobrow,

and N. Ducheneaut. What a to-do: studies of task
management towards the design of a personal task list
manager. In Proc. Conf. Human Factors in
Computing Systems, 2004.

[2] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith.
Taking email to task: The design and evaluation of a
task management centered email tool. In Proc. Conf.
Human Factors in Computing Systems, 2003.

[3] R. Carrasco. Accurate computation of the relative
entropy between stochastic regular grammars.
Theoretical Informatics and Applications, 31(5), 1997.

[4] N. Ducheneaut and V. Bellotti. Email as habitat: An
exploration of embedded personal information
management. ACM Interactions, 8(1), 2001.

[5] E. Gold. Grammar identification in the limit.
Information and Control, 10(5), 1967.

[6] J. Gwizdka. Reinventing the inbox – supporting the
management of pending tasks in email. In Proc. Conf.
Human Factors in Computing Systems, 2002.

[7] N. Kushmerick and A. Heß. Learning to attach
semantic metadata to web services. In Proc. Int.
Semantic Web Conf., 2003.

[8] P. Maes. Agents that reduce work and information
overload. Communications of the ACM, 37(7), 1994.

[9] K. Mock. An experimental framework for email
categorization and management. In Proc. Int. Conf.
Research and Development in Information Retrieval,
2001.

[10] S. Rohall, D. Gruen, P. Moody, M. Wattenberg,
M. Stern, B. Kerr, B. Stachel, D. Kushal, R. Armes,
and E. Wilcox. Remail: A reinvented email prototype.
In Proc. Conf. Human Factors in Computing Systems,
2004.

[11] M. Sahami, S. Dumais, D. Heckerman, and
E. Horvitz. A Bayesian approach to filtering junk
e-mail. In Proc. AAI-98 Workshop on Learning for
Text Categorization, 1998.

[12] R. Segal and J. Kephart. Incremental learning in
SwiftFile. In Proc. Int. Conf. Machine Learning, 2000.

[13] F. Thollard, P. Dupont, and C. de le Higuera.
Probabilistic DFA inference using Kullback-Leibler
divergence and minimality. In Proc. Int. Conf.
Machine Learning, 2000.

[14] W. van der Aalst, B. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A. Weijters. Workflow
mining: A survey of issues and approaches. Data and
Knowledge Engineering, 47(2):237–267, 2003.

[15] S. Whittaker and C. Sidner. Email overloading:
Exploring personal information management of email.
In Proc. Conf. Human Factors in Computing Systems,
1996.

APPENDIX: MODEL AGREEMENT
The purpose of the agreement metric A(P, P ′) is to measure
the extent to which P and P ′ model a given set of activities
in the same way. Since a stochastic automaton induces a
probability distribution over the set of all strings, it might
seem that one could emply Carrasco’s technique of mea-
suring the Kullback-Leibler divergence between the learned
model’s distribution and that of the hand-crafted model [3].
However, this is not feasible, because the alphabets of the
two models are different: there is no prior correspondence
between a learned model’s “gensym-ed” symbols t(m) and
the symbols in the hand-crafted model.

We adopt the following approach, which is based on the
idea of considering all possible mappings between states and
labels of the two models, and then counting the number of
common transitions.

Let P = (X, s0, F, L, T) and P ′ = (X ′, s′
0, F

′, L′, T ′) be
two process models. Without loss of generality, we assume
that the models have the same number of edges and labels.
(If this is not true we pad the models with dummy edges
and/or labels.)

Let φ be a mapping from X to X ′, and let γ be a mapping
from L to L′. In order to count how many transitions are
shared by P and P ′, we use these mappings to convert an
“P” edge into the corresponding “P ′” edge. Specifically, we
enumerate every possible transition (si, `, sj) ∈ X × L×X,
and count the frequency of the following four conditions:

a = |{(si, `, sj) : (si, `, sj) ∈ T ∧ (φ(si), γ(`), φ(sj)) ∈ T ′}|
b = |{(si, `, sj) : (si, `, sj) 6∈ T ∧ (φ(si), γ(`), φ(sj)) ∈ T ′}|
c = |{(si, `, sj) : (si, `, sj) ∈ T ∧ (φ(si), γ(`), φ(sj)) 6∈ T ′}|
d = |{(si, `, sj) : (si, `, sj) 6∈ T ∧ (φ(si), γ(`), φ(sj)) 6∈ T ′}|

Note that these counts depend on φ and γ but for brevity
we do not explicitly indicate this dependency.

The a edges are those that are shared by P and P ′ under
the mappings (φ, γ). Of course, these edges agree only to
the extent that the same messages are associated with these
edges. For label ` ∈ L, let M(`) be the set of messages
associated with `, and let

a∗ =
X

(si,`,sj)

|M(`) ∩M(γ(`)))|
|M(`) ∪M(γ(`))| ,

where the sum is over the a edges shared by P and P ′. The
intent is that a∗ ≤ a is the number of shared transitions,
each weighted by the extent to which it is associated with
the same messages in both models.

Let pφ,γ = a∗/(a∗ + c) and rφ,γ = a∗/(a∗ + b). Finally,
let Iφ = 1 if φ(s0) = s′

0 and 0 otherwise, and let Fφ =
|F ∩ φ(F ′)|/|F ∪ φ(F ′)|. Our agreement score with respect
to (φ, γ) is the harmonic mean of these four quantities.

Since the states and labels of the learned models are just
arbitrary symbols, we measure the agreement by examining
each possible mapping φ : X → X ′ and γ : L → L′:

A(P, P ′) = max
φ,γ

H(pφ,γ , rφ,γ , Iφ, Fφ),

where H(·) indicates the harmonic mean.
Note that A(P, P ′) = A(P ′, P). Furthermore, this func-

tion has its maximum value of 1 when the two models are
identical under φ and γ, and has its minimum value of 0
when the two models have different initial or final states, or
don’t share any transitions.

