
 1

Koala: Capture, Share, Automate, Personalize
Business Processes on the Web

Greg Little1, Tessa A. Lau2, Allen Cypher2, James Lin2, Eben M. Haber2, Eser Kandogan2
1MIT CSAIL
Building 32
32 Vassar St

Cambridge, MA 02139 USA
glittle@mit.edu

2IBM Almaden Research Center
650 Harry Rd

San Jose, CA 95120 USA
{tessalau, acypher, jameslin, ehaber,

eser}@us.ibm.com

ABSTRACT
We present Koala, a system that enables users to capture,
share, automate, and personalize business processes on the
web. Koala is a collaborative programming-by-
demonstration system that records, edits, and plays back
user interactions as pseudo-natural language scripts that are
both human- and machine-interpretable. Unlike previous
programming by demonstration systems, Koala leverages
sloppy programming that interprets pseudo-natural
language instructions (as opposed to formal syntactic
statements) in the context of a given web page’s elements
and actions. Koala scripts are automatically stored in the
Koalescence wiki, where a community of users can share,
run, and collaboratively develop their “how-to” knowledge.
Koala also takes advantage of corporate and personal data
stores to automatically generalize and instantiate user-
specific data, so that scripts created by one user are
automatically personalized for others. Our initial
experiences suggest that Koala is surprisingly effective at
interpreting instructions originally written for people.

Author Keywords
End-User Programming, Programming by Demonstration,
Wiki, Automation.

ACM Classification Keywords
H5.2. Information Interfaces and Presentation – User
Interfaces; D.2.6 Programming Environments

INTRODUCTION
Modern businesses are full of complex, idiosyncratic
processes performed by people of various skill levels and
knowledge. In particular, concerns over cost often force
companies to adopt a self-service approach where

employees perform their own travel arrangements, hiring,
and purchasing, despite their lack of expertise in these
processes. For example, engineers ordering a new monitor
may be confused by arcane procurement terminology such
as “Net parts Expense - Purchased from Vendor” versus
“Purchased & Leased Equip. - PC/Workstation”.

We have created a system called Koala to address this
problem by allowing end users to document and record the
specifics of performing a business process, and put the
process on a wiki to share their experience and allow others
to automatically execute the process for themselves.

Koala enables end users to record and automate their
interactions within the Mozilla Firefox web browser. As
users interact with the browser performing a process, Koala
records all the forms filled, links and buttons clicked, and
menus selected in a script. Instructions in the script are
saved as pseudo-natural language text, which is not only
easily readable, understandable, and editable by users but is
also interpretable and executable by Koala (Figure 1). The
Koala interpreter is sufficiently flexible that it is also
surprisingly successful at interpreting and automatically
executing instructions originally written for people. Koala
scripts are saved to Koala’s wiki, called Koalescence, so
that users can take advantage of working scripts created by
their colleagues. By making pseudo-natural language
human-readable instructions available on a wiki, Koala
makes it easy for co-workers to collaboratively edit and
share scripts.

RELATED WORK
Koala builds on a number of emerging technologies in the
web space. Greasemonkey [1] enables users to make client-
side modifications to the appearance and behavior of web
pages on their computer. However, creating a
Greasemonkey script requires detailed knowledge of
JavaScript programming to alter the DOM of the web page.

Chickenfoot [2] eases client-side customization by
providing a higher-level API for accessing and manipulating
common web page elements, using information in the
rendered DOM. For example, the Chickenfoot instruction
click(‘search button’) will click a button with the

 2

Figure 1. Ordering Office Products using Koala: Tina launches Koala, copies
instructions from an email of a colleague, steps through the instructions, fixes steps

manually, if necessary, to complete an order not in catalogue.

text “search” on it. However, the Chickenfoot interface is
still very much a programming interface, in which users
write syntactically correct statements in the Chickenfoot
programming language.

The Keyword Commands paper [3] advocates lowering the
language barrier even further by removing formal syntax
altogether. We call this approach sloppy programming.
However, practical implementations of this idea require
some assumptions. The Keyword Commands algorithm can
interpret expressions composed of keywords, such as click
search button, but it assumes that most keywords will map
to some function in the underlying scripting language. This
does not scale well to the verbose textual inputs that are
likely to appear in how-to documents written for humans.
Koala leverages the sloppy programming approach in the
web domain by taking advantage of the fact that most web
commands are flat: there is one verb, and one or two
arguments. This assumption dramatically simplifies the
algorithm, and makes it more robust to extraneous words. It
can handle long expressions originally intended for humans.

Koala exposes the synergy of a new paradigm in end-user
programming by combining features from: 1) sloppy
programming as a human- and machine-understandable
script representation; 2) programming by demonstration
(PBD) to record and play back user actions; 3) data stores to

automatically personalize scripts; and 4) a wiki for sharing
and collaborating on scripts. These features combine
synergistically: the power of PBD is multiplied by human-
readable recordings of user actions, which can be read and
corrected if necessary by the user. It also lends itself well to
being shared on wikis, thus extending the reach of PBD
systems from single-user personal automation to multi-user
collaborative organizational memory. Data stores contribute
to this synergy, and address a significant problem in end-
user programming, by effortlessly generalizing recorded
scripts and personalizing them for subsequent users. Both
sides of this process become transparent and intuitive
through the use of human-readable scripts and a simple
human-readable database.

A USE CASE: ORDERING OFFICE PRODUCTS
One of our first actual uses of Koala occurred when Tina
wanted to order a type of pen through our company’s online
ordering system (BOND), but the pen was not listed in the
online catalog. Tina didn’t know how to proceed, so her
colleague Edward emailed her step-by-step instructions,
based on how he had ordered video cassettes which were
not in the catalog. The following example is based on this
use case.

Tina opens the Koala sidebar, and pastes in the instructions
from the email from Edward and runs the script. Koala

highlights the first step in red, which says
login to BOND. The red means that
Koala does not know how to perform the
step, so Tina edits the script, which puts
Koala into Record mode. When she selects
the BOND website from her bookmarks,
Koala records this in the script as: go to
https://www.buyondemand.com/. Tina
deletes the line login to BOND and runs
the script again. Koala performs each step
of the script automatically, pausing for
each web page to load before continuing to
the next step. Before executing each step,
Koala highlights it in green, and visually
flashes the corresponding button or input
field on the web page so that the user can
see what it is about to do.

When Koala gets to the next-to-last step, it
highlights that line in red and does not
attempt to execute it. There are two
reasons for this. Currently, Koala does not
split multiple steps listed on a single line.
More importantly, Koala does not attempt
to execute any line containing the word
“you”. Instead, it waits for the user to
perform the step manually. This is a simple
and effective way to enable mixed
initiative execution of scripts: the
computer performs some steps and the user

 3

performs others, usually the steps that are too complex to be
worth automating. This is a staple of practical end-user
programming [4].

When Tina has finished running the script, she clicks the
Save button to store this script in the Koalescence wiki. She
or her colleagues can edit it further, rate it, or comment on
it. She can also email the script to her colleagues.

KOALA SLOPPY INTERPRETER
Koala utilizes a sloppy programming approach that
interprets pseudo-natural language instructions, as opposed
to formal programming language statements that must be
syntactically correct. Each step in a sloppy program is
processed by an interpreter that tries to evaluate the step in
the context of a given web page’s content, elements, and
available actions. For instance, given the Google home
page, and the slop click search button, the interpreter would
propose to programmatically click the search button.

We describe the algorithm in three basic steps, using the
example instruction type Danny into first name field on a
simple web form (Figure 2).

First, the interpreter enumerates all the possible actions
associated with various HTML objects in the document, such
as links, buttons, text boxes, combo-box options, check
boxes, and radio buttons. For each of these objects, the
interpreter associates a variety of keywords, including the
object’s label, synonyms for the object’s type, and action
verbs commonly associated with the object. For instance,
the First name field of a web form (○A in Figure 2) would
be associated with the words first and name, because they
are part of the label. It would also associate textbox and
field as synonyms of the field’s type. Finally, the interpreter
would include verbs commonly associated with text fields
such as enter, type, and write.

Next, the interpreter searches for the object that matches the
greatest number of keywords with the slop. In the example,
textbox ○A would match the keywords type, first, name and
field, with a score of 4. In contrast, textbox ○B would only
match the keywords type and field, with a score of 2.

Finally, the system may need to do some post-processing on
the slop to extract arguments (e.g. Danny). The key idea of
this process is to split the slop into two parts, such that one
part is still a good match to the keywords associated with
the web object, and the second part is a good match for a
string parameter using various heuristics (e.g. has quotes
around it, or is followed/preceded by a preposition). In this
example, the parts are: type into first name field (with 4
keyword matches), and Danny (which gets points for being
followed by the preposition “into” in the original slop).

Note that our scripts consist only of human-readable text.
We do not save interpretations or any other additional
information with the script. This is a radical departure from

previous PBD techniques but is surprisingly effective, since
a web page provides a very small search space. As with
Chickenfoot [2], the use of textual labels to identify web
page elements makes Koala scripts more robust to changes
in the page, since we expect that developers will keep
constant this proximate text-labeling, to avoid confusing
their users. Furthermore, this representation facilitates wiki-
style collaboration: users can simply edit the text document
to change the script. Finally, users can also utilize existing
how-to documents to import scripts into Koala, and have
reasonably good success executing them.

Understanding and Correcting Koala
Because Koala’s interpreter can sometimes be wrong, we
have implemented several techniques to help the user know
what the interpreter is doing and make corrections. We’ll
illustrate these techniques with the following example from
Figure 1.

Suppose the user has selected the highlighted line: scroll
down to the “Shop by commodity” section, click “View
commodities”. Koala interprets this line as an instruction to
click a link labeled View commodities. At this point, we
want to make two things clear to the user: what is the
interpreter planning to do, and why?

We show the user what the system is planning to do by
placing a transparent green rectangle around the View
commodities link, which is also scrolled into view.

We address the question of “why” by letting the user know
which words in their slop lead the interpreter to its
selection. In this case, the words click, view and
commodities were associated with the link, so we make
these words bold: scroll down to the “Shop by commodity”
section, click “View commodities”.

If the interpretation was wrong, the user can click the
triangle to the left of the line, which expands a list of
alternate interpretations. These interpretations are relatively
unambiguous instructions generated by the interpreter:

• click the “View commodities” link
• click the “View contracts” link
• click the “Skip to navigation” link

When the user clicks on any of these lines, the system
places a green rectangle over the corresponding HTML
control. If the line is the correct interpretation, they can
click the Run or Step button to execute it. If not, they may
need to edit the line. Failing that, they can add the keyword
you (e.g., you click the “View commodities” link) so that

Figure 2. A simple web form.

 4

the interpreter leaves execution to the user.

DATA STORE — PERSONALIZING SCRIPTS
Business work frequently involves filling in forms with
user-specific data. While Koala scripts are posted to
Koalescence, so that users can take advantage of scripts
created by their colleagues, it would be of little value to run
them with the original author’s data. Koala uses several
sources of user-specific data to overcome this problem.

Koala includes a personal data store for each user, which is
simply a text box containing name-value pairs (bottom left
corner of Figure 1). Users can enter any data field they
choose, and supply their personal value. During script
recording, if the user fills in a form with a value that
appears in the database, that step is automatically
generalized to refer to the named attribute, rather than the
current user’s literal value. For example, a script step might
be generalized to: enter your home street address (e.g., 100
Main Street) into the “Address:” textbox. Note that Koala
also includes a sample value as part of the step, since we
have found that specific examples help future users of the
script understand the format to be used for that value.
During playback, references to the personal data store are
automatically filled in with the current user’s values,
thereby personalizing the script for this user.

Koala can also incorporate other data sources, such as a
corporate directory containing data about employees, such
as phone number, office number, and e-mail address. Koala
automatically extracts all of this data about its current user,
and makes it available to recorded scripts.

KOALESCENCE WIKI — SHARING “HOW TO”
The pseudo-natural language instructions in Koala scripts
make wikis a natural choice for sharing “how to”
knowledge. As scripts are readable even without the Koala
extension, they are useful to many users.

The Koalescence wiki allows users to view existing scripts,

along with ratings and information on the scripts (Figure 3).
The wiki provides various ways to find a script, including a
search utility, a popular script list, and tag clouds. Users can
also view their scripts under “my scripts”.

When viewed in the Koalescence wiki, a script is
essentially a list of human-readable instructions. They can
be duplicated to create another version or deleted, if
obsolete. Users can also add tags, rate, or comment on the
scripts to facilitate an effective sharing environment.

CONCLUSION AND FUTURE WORK
Koala allows users to capture, share, automate, and
personalize business processes on the web. With Koala, the
barriers to capturing “how to” knowledge are significantly
lowered. Future work includes leveraging past contexts,
adding data detectors, enriching the interface to support
control flow, and performing extensive user studies to
determine its value in a real-world setting.

REFERENCES
1. McFarlane, N. 2005. Fixing web sites with

Greasemonkey. Linux J. 2005, 138 (Oct. 2005), 1.
2. Bolin, M., Webber, et. al. Automation and

customization of rendered web pages. In Proc. UIST
2005, ACM Press (2005), 163–172.

3. Little, G., and Miller, R. C. Translating Keyword
Commands into Executable Code. In Proc. UIST 2006,
ACM Press (2006).

4. Horvitz, E. Principles of Mixed-Initiative User Inter-
faces. In Proc. CHI ’99, ACM Press (1999). 159–166.

Figure 3. The Koalescence wiki allows users to search and
view existing scripts with ratings and information, as well as
editing scripts to provide additional information.

Figure 4. A script in the Koalescence Wiki displays human
readable instructions. Users can load, edit, rate, and comment
on the scripts.

