
Towards Automatic Functional Test Execution
Pablo Pedemonte

IBM Argentina
Ing. Butty 275 – C1001AFA

Buenos Aires, Argentina
ppedemon@ar.ibm.com

Jalal Mahmud
IBM Research – Almaden

650 Harry Rd.
San Jose, CA 95120

jumahmud@us.ibm.com

Tessa Lau
IBM Research – Almaden

650 Harry Rd.
San Jose, CA 95120

tessalau@us.ibm.com

ABSTRACT
As applications are developed, functional tests ensure they
continue to function as expected. Nowadays, functional test-
ing is mostly done manually, with human testers verifying a
system’s functionality themselves, following hand-written in-
structions. While there exist tools supporting functional test
automation, in practice they are hard to use, require program-
ming skills, and do not provide good support for test main-
tenance. In this paper, we take an alternative approach: we
semi-automatically convert hand-written instructions into au-
tomated tests. Our approach consists of two stages: first,
employing machine learning and natural language process-
ing to compute an intermediate representation from test steps;
and second, interactively disambiguating that representation
to create a fully automated test. These two stages comprise a
complete system for converting hand-written functional tests
into automated tests. We also present a quantitative study an-
alyzing the effectiveness of our approach. Our results show
that 70% of manual test steps can be automatically converted
to automated test steps with no user intervention.

Author Keywords
Manual Test Automation; Natural Language Processing;
Supervised Learning

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Natural Language;

INTRODUCTION
Testing can be an expensive task [9] whose effectiveness is
crucial to a project’s success. One way to achieve an effective
testing process is by means of test automation. By automating
some or all of the work necessary to execute a test, testers can
focus on verifying complex cases and key features instead of
dedicating time to repetitive, tedious execution tasks. Auto-
mated execution excels on repetitive tasks like unit testing [6].
But there are other testing disciplines where automated exe-
cution is hard to achieve with existing tools.

Functional testing poses a case where test automation is diffi-
cult to achieve. Functional tests verify that a system complies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’12, February 14–17, 2012, Lisbon, Portugal.
Copyright 2012 ACM 978-1-4503-1048-2/12/02...$10.00.

with its specifications and requirements, ignoring internal de-
tails such as code, design or architecture. According to our
experience in large organizations, functional testing is done
mostly manually: system functionality is verified by human
testers, following hand-written instructions detailing how to
feed a system with some input, and the expected outputs.
This situation is particularly problematic for large, long-lived
projects, which might carry hundreds of legacy functional
tests. Periodically executing such tests by manual means can
take a considerable amount of time and resources. Our work
aims to automate functional test execution, thus helping to
alleviate this problem.

In practice, the approach to functional test automation con-
sists of deriving a program from a test. One can derive such a
program either by coding it (which puts the automation bur-
den on the developers) or by means of a recording tool [8].
At first glance, recording looks like a good solution for au-
tomating functional tests. At the price of manually following
the test instructions during a recording session, one obtains
a script that can be executed later without incurring further
automation overhead. But there are limitations to recording.
First, testers still need to manually execute the test during
recording. Second, software artifacts resulting from record-
ing consist of generated code, which is not easy to maintain.
If a test needs to be changed one has to modify the resulting
program. This requires programming skills, and might not
be a simple task. Alternatively one could re-record, which
implies manually executing the test again. While end-user
programming systems such as CoScripter [13] could reduce
the programming requirement, the recording barriers remain.
In contrast, we propose a semi-automated approach that elim-
inates the need to do any recording at all.

We address functional test automation with a two stage ap-
proach:

1. Converting a manual functional test into an intermediate
representation amenable for automated execution.

2. Interpreting the intermediate representation with user guid-
ance.

Our approach processes a test step by step, converting and
interpreting each step in turn. The key problem with under-
standing natural language is that it is imprecise, so the mean-
ing of a hand-written instruction might not be unambiguously
determined. We handle such cases by asking for user guid-
ance: if while executing a test we find an instruction whose
meaning can not be precisely determined, we ask the user
how to proceed. We use this feedback to create a modified

manual test based on the original, which can be automatically
executed using our system. Our approach is especially suited
for periodic functional test execution, which is the norm in
test organizations, as functional tests are used during devel-
opment to ensure a system continues to work as specified.
After a first run of a test requiring user intervention to handle
ambiguous instructions, our approach enables fully automatic
execution by a returning a new test defining the same actions
as the original, but requiring no user assistance to execute.

This approach frees programmers from the tedious task of
writing code for functional tests, and testers from the burden
of manual step execution (provided the interpreter does not
require user intervention at every step). But why is it better
than recording? Like recording, our approach requires effort
from the user only for the first execution of a test, and future
runs will not need user intervention. But unlike a recording
session, our first execution requires user intervention sporad-
ically, only when the interpreter finds an ambiguous instruc-
tion. Furthermore, since our approach generates written man-
ual tests instead of code, it reduces the cost of maintaining
these tests over time.

Specifically, we make the following contributions:

• A machine learning-based algorithm for converting a test
into an intermediate representation suitable for automated
execution.

• A semi-automated algorithm for interpreting the intermedi-
ate representation derived from a test, requesting feedback
from the user if the intermediate representation can not be
unambiguously interpreted, and using this feedback to cre-
ate an equivalent test with no ambiguous steps.

• An implemented system for automatic manual test execu-
tion, based on our conversion and interpreter algorithms.

• A quantitative study evaluating the performance of our al-
gorithms. Our results show that we can execute more than
70% of the instructions in a test without user intervention.

We start with a formulation of our approach to functional test
automation, then we describe the stages of our approach. Af-
ter that, we present the quantitative study analyzing the ef-
fectiveness of our approach. Finally, we discuss key aspects
of our approach and future research directions, and conclude
with an overview of related work.

PROBLEM DEFINITION
A manual test is an ordered sequence {si}, i ≥ 1, of test steps
(or instructions). A value-free manual test is a pair (M, vs),
where M is a manual test whose literal values (such as “10”
in type quantity 10) have been replaced by variables, and
vs is an ordered set of values. The idea is that a value-free
test is a parametrized test that can be executed many times
with different values, by providing distinct sets. We transform
a manual test into its value-free version by a manual value
replacement stage which we will describe later.

Given a value-free manual test (M,vs), M = {si}, our sys-
tem executes the steps si in order of occurrence and returns
a new test M ′ = {s′i} that defines the same actions as M ,

but does not require user intervention when executed. In this
way we materialize the benefits of our approach: executing
M might require user intervention, but after that we will have
a manual test M ′ equivalent to M , requiring no effort from
the user to execute. Fig. 1 (a) depicts the complete process.

Executing a step involves two stages: converting it to an in-
termediate representation, and interpreting that representation
on the application under test. Fig. 1 (b) shows how these two
stages interact in order to execute a single step.

Converting Test Steps
Based on existing work about interpreting hand-written in-
structions [13, 12], we view test steps as entities denoting
actions to perform on target GUI elements of the application.
Hence, in order to execute a step, we need to identify:

• The actions denoted by the step.

• The target for each action in the step.

• Any data required by the actions. For example, the “enter”
action requires a value to be entered into a text field.

Fig. 2 shows a sample real-world test about reinstating lapsed
insurance policies. The actions in step 1 are “enter” and
“press”, and their respective targets are two GUI elements
labeled “policy number” and “search”. Moreover, the “enter”
action has a policy number template as associated data. Tar-
gets can be specified either by a label alone (e.g., “search” in
step 1) or by a label and a target type (like “save button” in
step 4). Targets specified only by a label are implicit.

Therefore, we define the intermediate representation of a test
step to be a tuple combining the action intended by the step,
the target of the action, and any associated data if present. We
will refer to these as (A, T, D) tuples.

We define the current application state st to be the combined
state of all the GUI elements of the application at the present
time. Performing an action on the application (e.g., enter-
ing some text) might change the GUI, and hence, the current
state. Our conversion algorithm is then defined as a function
taking a pair (st, s) representing the current application state
and a test step to convert, and returning an ordered list of one
or more tuples {(Ai, Ti, Di)}, i ≥ 1, one for each operation
denoted by a step. From now on, we will refer to the conver-
sion algorithm as tuple extraction.

Fig. 3 shows the (A, T, D) tuples obtained from the example
test (a “•” in the data component means that the tuple carries
no data). Note that a test step can be converted into multi-
ple tuples. Note also that there is no translation for step 5
in Fig. 2. That step does not denote an action to apply on
the application’s GUI, but rather a verification step we know
nothing about (even a tester attempting to execute this step
might have trouble trying to find out what are the “operational
and referral rules” that the system should follow). Processing
such instructions is an area for future work.

Interpreting Test Steps
We define the interpreter algorithm to be a function taking
the current application state st, the textual representation s of

Figure 1. (a) Complete manual test automation process – (b) Execution of a single step

the current step, and a tuple (A, T, D) to interpret, obtained
from converting s. The result will be a pair (st′, s′), where
st′ is the new application state resulting from interpreting the
tuple, and s′ an unambiguous version of the step s, based
on the user’s feedback if disambiguation took place. If user
intervention was not needed, s′ will be equal to s. Therefore,
the result of running the interpreter on each step of a test M is
a new test, M ′, whose steps have been fully disambiguated.

Interpreting an (A, T, D) tuple requires applying the action
A to the target denoted by T . The crucial step is resolving
the target, i.e., finding a GUI element matching T . There can
be multiple elements matching T . For example, consider a
page having a search link and a search icon. Both elements
will match the target in the tuple (click, search, •). It is likely
that clicking either element will have the same effect, but we
can not assume that in general. When the target of a tuple can
not be uniquely determined, we say that the tuple’s target is
ambiguous. In some cases, this ambiguity can be overcome
by inspecting the tuple to interpret. But in general, there may
not be enough information to select the intended target.

Let T. l be the label in the target specification, and T. t the
type (which will be the undefined value “•” if T is implicit).
Let label be a function that given the application state and an
GUI element computes its label, and type a function that re-
turns an element’s type. Then, the set of elements e matching
the target specification T is:

{e ∈ st | T. l = label(st, e) ∧
(T. t = • ∨ T. t = type(e))}

Note that in order to find the candidate targets matching T
we need the application state to be up to date, i.e., reflecting
the effects of the steps interpreted previously. This means that
when we try to interpret the tuples obtained from a step si, the
application under test must be in a state reflecting the effect of
the tuples for the steps s1 . . . si−1. One way to achieve this is
to “thread” the state through the interpreter, passing the cur-
rent state to the function and returning a new state resulting
from interpretation of the tuple.

1. enter the policy number as xxx-xxx-xxxx
then press search

2. press reinstate button
3. enter the following

effective date as mm-dd-yyyy
paid indicator as "y"
comments as "payment done"

4. press save button
5. validate system follows operational

and referral rules

Figure 2. A real-world manual test

1 (enter, policy number, xxx-xxx-xxxx)
(press, search, •)

2 (press, reinstate button, •)
3 (enter, effective date, mm-dd-yyyy)

(enter, paid indicator, y)
(enter, comments, payment done)

4 (press, save button, •)

Figure 3. Tuples for manual test in Fig. 2

From now on, we will refer to the algorithm interpreting the
intermediate representation of a test step (i.e., a sequence of
(A, T, D) tuples) as the tuple interpreter.

VALUE REPLACEMENT
In practice, functional tests are executed many times with dif-
ferent values. This might have an impact on the way that tests
are written. For example, step 1 in Fig. 2 tells us to enter a
policy number following the pattern “xxx-xxx-xxxx”, but it
says nothing about the valid values we could pass to the sys-
tem in order to move on to step 2. This is because the test is
expected to be executed with different policy numbers. For
example, one could verify that the system correctly processes
different classes of policies, e.g., car accident and credit card
insurance.

This complicates repeated test execution: every time we ex-
ecute a test, we might need to modify it in order to pro-
vide new values. We overcome this complication by intro-
ducing a mechanism to abstract out values from a functional

Figure 4. Tuple extraction process

test, namely value variables. Value variables have the form
VALUE(i), referring to the i th value in an ordered set of val-
ues available at text execution. This way, step 1 in Fig. 2
would change to:
enter policy number as VALUE(0)
then press Search

where the test must be run with an ordered set of values hold-
ing a policy number at position 0. Value variables are useful
in other cases where values are often missing, such as login
instructions. A step like enter user name and password
can be converted into enter user name VALUE(0) and
password VALUE(1), thus making the values explicit.

In the value replacement stage users replace values in a test
with variables and define one or more value sets. Like user
disambiguation, value replacement will be necessary only for
the first execution of a test. Although this represents a slight
overhead for the tester, it facilitates repeated test execution. If
we need to execute a test several times with different values,
we only need to re-execute with a different value set. The test
remains unchanged. Automatic value replacement is an area
for future work.

TUPLE EXTRACTION
We extract a sequence of (A, T, D) tuples from a step by
a succession of fully automatic transformations (depicted in
Fig. 4). We start with an example, then we describe all the
transformations in detail. For the example we will use the
first step of the test in Fig. 2. After value replacement, we
have:
enter policy number VALUE(0) then press search

We start by replacing target labels with label variables. This is
similar to introducing value variables, but since we can query
the current state of the application for the available labels in
the GUI, it is possible to automatically enumerate all the la-
bels and remove their occurrences in the step. This label re-
placement stage leaves us with a simplified, less verbose test
step. Our example test step becomes:
enter LABEL(policy number) VALUE(0)

then press LABEL(search)

Note that this step denotes two actions. Our next stage, step
segmentation, decomposes such a composite step into steps
containing exactly one action verb, i.e., a verb that can act as
the A component of a tuple. We call such steps atomic. Seg-
mentation gives us two atomic steps: enter LABEL(policy
number) VALUE(0) and press LABEL(search).

The next stage, step annotation, identifies the tokens in each
atomic step referring to the action, target and data of the tu-
ples we intend to obtain. In our first atomic step we identify
“enter” as the action, the label as the (implicit) target, and
the value as the associated data. In the second atomic step,
“press” is the action and the label the (again implicit) target.
Based on this information, in the final tuple generation step
we compute the two tuples as shown in Fig. 3: (enter, policy
number, VALUE(0)) and (press, search, •).

Label Replacement
There are cases where different instructions have the same
underlying structure. Consider the steps:

click Add item to shopping cart icon
click Search button

What if we replace target labels with variables, like we did
with values? If we write label variables as LABEL(l), where
l is the replaced target label, the example becomes:

click LABEL(Add item to shopping cart) icon
click LABEL(Search) button

Replacing labels with variables has has the desirable effect of
inducing a notion of a test step normal form that allows us to
focus on the structure of the step. After label replacement,
seemingly different steps end up having the same structure.
This simplifies the remaining stages of the extraction process,
by reducing the number of forms that test steps can take. Be-
sides, label replacement results in shorter instructions where
it is simpler to identify the components of the (A, T, D) tu-
ples to extract. For example, in its original form the first step
has 7 tokens; after label replacement it has been reduced to
3 tokens (“click”, a LABEL variable, and “icon”) which di-
rectly correspond to the step’s action, target label, and target
type. Later, we will see that label replacement also allows us
to avoid tricky labels that might prove problematic for later
stages of our tuple extraction algorithm.

Label replacement starts by tokenizing and POS tagging [3]
the current step. Then, we identify target labels with the aid
of a table holding all currently available labels. We compute
the table by collecting the labels of all the elements in the
application’s GUI. Once we have this table, we calculate all
n-grams in the step using suffix arrays [14]. Then, for each
n-gram, we query the table to check if it is a label. We have
implemented a few strategies to ensure that we don’t have
false positives, e.g.: discard candidate unigrams POS-tagged
as verbs if they belong to a list of typical actions (e.g., click,
select, type, enter, etc.), and ignore n-grams that are included
in another candidate n-gram. Finally, we replace each match-
ing n-gram l with a variable LABEL(l) POS-tagged with the
NN tag (i.e., a noun).

Step Segmentation
The latter stages of the tuple extraction algorithm work on
atomic test steps, i.e., steps including exactly one action verb.
The step segmentation phase does the work of computing the
atomic constituents of a possibly composite test step. If the
input step is already atomic, then this stage reduces to the
identity function.

A possible approach to segmentation is to define a set of de-
limiter words (e.g., “and” or “then”), using them to obtain the
atomic instructions in a step. For example:
enter user admin and password admin01
and click login

This naı̈ve approach would result in the steps enter user
admin , password admin0 , and click login . But note
the second step: it does not include an action verb, so it is
not atomic. We could determine that the action is “enter” by
inspecting the previous step, but this introduces dependencies
on previous actions in the test.

We decided to avoid such backward dependencies by an al-
ternative criteria based on action verbs instead of delimiter
words. The action verbs in the example step are “enter” (ap-
plied to two input fields) and “click” (applied to a button).
These two action verbs map to the atomic instructions enter
user admin and password admin0 , and click login .
Note that these steps are atomic, and that atomic steps might
denote more than one action (although they include only one
action verb). This new criteria complicates the naı̈ve segmen-
tation strategy: separator words like “and” will not always be
delimiters. Simply looking for delimiter tokens is no longer a
reliable strategy for segmentation.

Sentence chunking [1] (also known as shallow parsing) is a
technique for assigning labels to tokens in a text, typically
used to divide text into syntactically related non-overlapping
groups of words. Sentence chunking is a well known prob-
lem in the natural language processing community (see the
CoNLL-2000 shared task [22]), and there are several solu-
tions to it. If we use special labels to delimit atomic instruc-
tions in composite steps, then we can reduce the decompo-
sition problem to sentence chunking with these labels. A
convenient form for such delimiter labels is the BIO tagging
scheme [15]. Under this scheme, a token either starts a step,
is inside, or outside an atomic step. So we only need three
tags: B-CMD, I-CMD and O, respectively. The example in-
struction should be chunked like this:
enter B-CMD
LABEL(user) I-CMD
admin I-CMD
and I-CMD
LABEL(password) I-CMD
admin01 I-CMD
and O
click B-CMD
login I-CMD

Notice the labels for the “and” tokens: the first one is inside
an atomic action, since password admin01 is not an atomic
step. But the second one is a delimiter for the two atomic
instructions in the composite step.

Step Annotation
The previous stage transformed a possibly composite test step
into a sequence of atomic instructions. In order to derive
(A, T, D) tuples from an atomic step, we must identify the re-
gions corresponding to the action, targets and additional data
in the step. For that purpose, we will annotate atomic steps
using again sentence chunking. But this time, we will have

a richer set of labels. From analysis of a comprehensive set
of manual steps written by professional testers, we decided to
use the following labels:

• ACT : action part of the step

• TGT : target part of the step

• VAL : data part of the step, if any

• LOC : location information, explains how to reach a target

• DSC : description of step’s intention or effect, usually not
useful for computing tuples.

The following instruction exemplifies how we annotate test
steps:
In the LABEL(Sender Data) tab,
enter anonymous in the LABEL(name) textbox
for anonymous feedback

Note that this step is atomic, as it features a single action
(enter some text). This is the labeling we expect to obtain:
In B-LOC
the I-LOC
LABEL(Sender Data) I-LOC
tab I-LOC
, O
enter B-ACT
anonymous B-VAL
in O
the B-TGT
LABEL(name) I-TGT
textbox I-TGT
for B-DSC
anonymous I-DSC
feedback I-DSC

We have the enter token marked as the action, and the
name textbox as the target. We also have a value to enter
in the text box, anonymous . Finally, we identify location
information (the target is in the Sender Data tab), and a
verbose explanation of the instruction’s intent.

Tuple Generation
Having a sequence of annotated atomic steps, we have to de-
rive a set of tuples from this data. Based on the output ob-
tained from the step annotation stage, we discovered that the
following rules suffice to generate tuples from an annotated
step:

1. Single target: generate a single tuple.

2. Multiple targets, no values: distribute the action across the
targets, generating as many tuples as targets in the step.

3. Multiple (target,value) pairs: generate a tuple for every tar-
get; using the corresponding value as the data component
of the tuple.

The first option is the trivial case. With a single target, we
only need to group it with the action and any data (i.e., a value
chunk) present in the step. For example, for the step click
ok the resulting tuple will be (click, ok, •).

Figure 5. Disambiguation dialog

Rule 2 refers to steps with multiple targets and no data, such
as click remember me and login . In this case we dis-
tribute the action across all the available targets, to get (click,
remember me, •) and (click, login, •).
When we find a sequence of targets, some or all of them
paired with a following data region, it means that we are pro-
cessing a multiple data entry step. Instructions to fill in a form
follow usually follow this pattern. For example:
enter
first name as John,
last name as Doe

According to rule 3, we generate one tuple for each (target,
value) pair in the instructions. That gives us the tuples (enter,
first name, John) and (enter, last name, Doe).

These three rules define how to map a single action plus mul-
tiple targets and values to a sequence of tuples. What about
location regions? They specify spatial relations that help to
locate targets. The two relations that we identify are contain-
ment (for example, click the ok button inside the
checkout tab) and relative placement (for example, click
the search button next to the settings link).

Containment relations result in an extra tuple to select the
target’s container before performing an action on the target.
For the containment example above, we will obtain the tuples
(click, checkout tab, •) and (click, ok button, •). The first tu-
ple ensures the container for the “ok” button has focus, while
the second one performs the intended “click” action on the
“ok” button.

Relative placement relations can be useful for avoiding am-
biguity. If we had two buttons with label “b”, one next
to a panel “p” and another besides a panel “q”, we could
say click the b button next to panel p to unambigu-
ously refer to the first one. At the expense of requiring user
intervention due to ambiguities that could have been avoided
otherwise, we are still not using relative placement relations
in our tuple extraction algorithm. Processing relative place-
ment information so we can reduce target ambiguity is a topic
for future work.

TUPLE INTERPRETATION
After converting a step into its intermediate representation,
we must interpret the resulting tuples against the application
under test. Our tuple interpretation algorithm is defined by
the following pseudo-code:

procedure interpret (st, s, (A, T, D)) :
es← {e ∈ st | label(st, e) = T. l ∧

(T. t = • ∨ T. t = type(e))}
if |es| = ∅
error (“Invalid tuple”)

if |es| > 1
es← heuristicDisamb (es, (A, T, D))

if |es| > 1
(e, s′)← userDisamb (es, s)

else
e ← the only element in es
s′ ← s

st′ ← apply ((A, T, D), e)
return (st′, s′)

Here, st is the current application state, s is the textual rep-
resentation of the current step, and (A, T, D) is the tuple to
interpret. We start by resolving the target denoted by T . For
that, we collect the set es of all the available GUI elements
from the application state for which the tuple applies. If es
is empty, the tuple is invalid. If there are multiple candidate
elements, we try to narrow down the set by a heuristic dis-
ambiguation procedure. If we still have multiple elements we
ask for user disambiguation, using the user’s choice to com-
pute a new textual step s′. If user feedback was not required,
s′ will be equals to s. Once we compute the GUI element e
denoted by T , we apply the tuple (A, T, D) to it, resulting in
state st′. We return st′ and the step s′.

The heuristic disambiguation procedure uses the (A, T, D)
tuple to narrow down the candidate set to a single element.
For example, if we have a tuple (enter, Search, books) and
the candidates are an input field and a button, we must be
referring to the former, since entering some text applies to
input fields, not buttons. Hence, we can discard the button,
ending up with a single candidate element.

If we still have multiple candidates, we ask the user to dis-
ambiguate. Our interpreter presents a dialog to the user with
the list of candidate elements. Fig. 5 depicts the execution of
a test doing a book search on a web application. The user is
being asked to pick between the title or an image of the cover
of the book for the instruction click the Busy Coder’s
Guide to Android Development . Once the user picks an
alternative, the interpreter can proceed to apply the action to
the user’s selection. But equally important, the user’s answer
is used to compute a new test step s′ reflecting the answer. In
our example, if the user picks the link option, the step will be
adjusted to click the Busy Coder’s Guide to Android
Development link.

SVM CRF

Prec. Rec. F1 Prec. Rec. F1

97.32 96.29 96.80 97.83 95.76 96.78
Table 1. Step segmentation results

Applying an (A, T, D) tuple to a GUI element e requires pro-
grammatically emulating the action A on e. For example, if
A = “click” we will generate a click event on e, and if A =
“type”, we will set e’s value to D. The set of available actions
is the same as in CoScripter [13], plus synonyms for them
(e.g., “press” for “click”, or “type” and “fill in” for “enter”).

EVALUATION
We conduct a series of experiments to analyze the effective-
ness of the segmentation and annotation stages of our tuple
extraction algorithm. We also determine how much label re-
placement contributes to step annotation, by repeating our ex-
periments with the label replacement stage turned off. In ad-
dition, we measure how much user intervention our approach
needs to create a fully automatable test.

Experiment 1: Step Segmentation
For this experiment, we used a corpus of 27 real world man-
ual tests, written by professional testers. These tests com-
prise a total of 154 test steps. We manually annotated the
test steps with the corresponding CMD and O labels, and
trained two chunk annotators on this data: Yamcha1 (based
on Support Vector Machines [5], or SVM for short), and
CRF++2 (based on Conditional Random Fields [11], or CRF
for short). We evaluated the resulting models using a 10 fold
cross-validation experiment on the training data, calculating
precision, recall, and the F1 measure for each run.

We calculate precision P , recall R, and F1 measure for a tag
t as follows: let N be the number of occurrences of t in a
test corpus, O the number of occurrences of t reported by an
annotator, and C the number of true positives (i.e., the num-
ber of correct occurrences reported by the annotator). Then,
P = C/O, R = C/N , and F1 = 2PR/(P + R).

In Table 1 we present the results for the 10 runs in the experi-
ment. The training set includes 189 CMD regions. The SVM
annotator found 187 regions, with 182 true positives. The
CRF annotator found 185 regions, with 181 true positives.
Both performances are practically the same, as the similar F1

scores show.

Experiment 2: Step Annotation
We conducted two 10 fold cross-validations. One was on a
training corpus consisting of the 182 atomic instructions cor-
rectly identified in the step segmentation experiment by the
SVM annotator. The other was on a corpus of 200 atomic in-
structions, collected from the documentation of an industrial
application server giving step by step instructions for several
administrative tasks. We manually labeled both training cor-
pora with ACT, TGT, VAL, LOC and DSC labels. As in step
1http://chasen.org/˜taku/software/yamcha
2http://crfpp.sourceforge.net/

SVM CRF

Prec. Rec. F1 Prec. Rec. F1

ACT 99.45 99.45 99.45 99.44 98.35 98.90
DSC 86.05 77.08 81.32 88.64 81.25 84.78
LOC 93.33 66.67 77.78 88.89 76.19 82.05
TGT 88.21 93.94 90.99 88.89 88.89 88.89
VAL 87.01 84.81 85.90 90.53 85.15 87.76

Total 91.65 91.98 91.81 92.65 90.16 91.39
Table 2. Step annotation (corpus #1)

SVM CRF

Prec. Rec. F1 Prec. Rec. F1

ACT 99.00 99.50 99.25 98.51 99.50 99.00
DSC 70.97 57.89 63.77 65.62 55.26 60.00
LOC 73.08 82.61 77.55 67.86 73.08 70.37
TGT 93.03 92.57 92.80 92.96 91.58 92.27
VAL 93.43 94.52 93.88 93.15 93.15 93.15

Total 93.06 92.02 92.54 92.13 91.28 91.71
Table 3. Step annotation (corpus #2)

segmentation, we experimented with SVM and CRF-based
chunking. We present precision, recall and F1 for both chun-
kers in Table 2 and 3.

On the first corpus, our SVM annotator correctly chunked 164
of the 182 atomic commands (90.11%). The CRF annotator
correctly chunked 158 of 182 (86.81%). Overall results are
similar in both cases. Individually, results are generally good
for each region except location, which shows a low recall
(66.67% with SVM chunking, and 76.19% with CRF). This
means that we are missing approximately one third of the lo-
cations in the test corpus. Of all these missed location tokens,
approximately 60% were mislabeled as targets. This happens
because in some cases targets “take precedence” over loca-
tions. For token sequences of the form {preposition, “the”,
LABEL, type} (e.g., in the save dialog), the preposition
is discarded (labeled as O), so the chunker sees a sequence
denoting a target: {“the”, LABEL, type}. We believe that
the reason is that there are much more targets than location
regions in our test corpus (the locator/target ratio is 0.092%),
so our model lacks enough training to properly detect all lo-
cation regions. We plan to continue our experiments with
training data featuring a higher locator occurrence ratio.

Results are similar on the second corpus. The SVM anno-
tator chunked correctly 183 out of 200 steps (91.5%); the
CRF annotator 181 out of 200 (90.5%). The ratio of cor-
rectly annotated steps is above 91%; and precision, recall and
F1 measure are high for the ACT, TGT, and VAL labels. We
are missing locations, which is reflected in low precision and
recall for the LOC regions. Again, we are annotating some
locations as targets: approximately 70% of the missed loca-
tions were misclassified as targets. Descriptions show a par-
ticularly low performance. Given that this corpus was ex-
tracted from a book, descriptions explaining instructions are
very verbose in some cases, complicating their recognition.

http://chasen.org/~taku/software/yamcha
http://crfpp.sourceforge.net/

SVM CRF

Prec. Rec. F1 Prec. Rec. F1

ACT 99.45 99.45 99.45 99.45 99.45 99.45
DSC 85.37 72.92 78.65 87.18 70.83 78.16
LOC 86.67 65.00 74.29 63.64 33.33 43.75
TGT 81.40 83.47 82.43 80.33 81.70 81.01
VAL 72.31 60.26 65.73 88.06 75.64 81.38

Total 86.79 83.87 85.30 87.92 83.87 85.84
Table 4. Step annotation, no label replacement (corpus #1)

SVM CRF

Prec. Rec. F1 Prec. Rec. F1

ACT 94.87 95.85 95.36 94.90 96.37 95.63
DSC 43.75 18.92 26.42 84.62 29.73 44.00
LOC 72.73 76.19 74.42 71.43 47.62 57.14
TGT 82.41 83.67 83.04 78.95 84.18 81.48
VAL 82.19 83.33 82.76 83.10 81.94 82.52

Total 85.54 82.76 84.13 83.10 81.94 82.52
Table 5. Step annotation, no label replacement (corpus #2)

Experiment 3: Contribution of Label Replacement
To get a measure of how much label replacement contributes
to good performance in step annotation, we repeat the step
annotation experiments, skipping the label replacement stage.
We give the results from this experiment in Tables 4 and 5.

On the first corpus, the SVM annotator correctly chunked 141
of the 182 instructions (77.47%). The CRF annotator cor-
rectly chunked 144 of the 182 instructions (79.12%). As ex-
pected, the performance in target recognition dropped notice-
ably. We move from a F1 around 90 with label replacement,
to approximately 80 in this experiment.

We get similar results for the second corpus. The SVM an-
notator chunked correctly 153 of the total 200 instructions
(79.27%); the CRF annotator chunked properly 155 of the to-
tal (77.50%). One noticeable result is the very low recall and
precision we obtain for descriptions from both annotators.
For the same reason as in the previous experiment, recogniz-
ing descriptions is challenging for book instructions, and even
more in face of target labels, which can also be long chunks
of tokens. Therefore, we conclude that label replacement sig-
nificantly increases the performance of our tuple extraction
algorithm.

Experiment 4: Interpreting Tuples
Our manual test automation procedure should keep user inter-
vention low. Otherwise, it degrades to step by step execution
or recording approaches. Our last experiment aims to find out
how much user intervention is required in practice to execute
a test. For this, we execute with our tuple interpreter the 164
(out of 182) correctly annotated steps obtained from our step
annotation experiment on the first corpus.

We measure how many steps could be executed without user
intervention, relative to the number of correctly annotated

Total test steps 182
Properly labeled 164 (90.11%)

% properly labeled % total

Executed 129 78.66% 70.88%
Table 6. Tuple execution without user intervention

steps (i.e., 164) and also relative to the number of total atomic
steps (i.e., 182). Table 6 summarizes the results. Out of the
164 properly annotated test steps, our system executed 129
(i.e., 78.66% of them) without any kind of user intervention.
The remaining 35 steps referred to ambiguous targets that re-
quired user intervention in order to be executed. Relative to
the total number of atomic steps, we could execute 70.88% of
them without aid from the user.

Given the total 182 atomic instructions, our procedure cor-
rectly processed and executed 70.88% (more than two thirds)
without any user intervention. And furthermore, user inter-
vention will not be needed in future executions. Recording,
on the other hand, would require executing all the steps in a
test manually, one by one, before having a script that could
be executed without user intervention. Our approach leads to
the same results with one third of the work, and the resulting
artifacts are more easily maintainable than the programs or
scripts obtained with traditional recording.

DISCUSSION AND FUTURE WORK
Our approach requires users to transform a manual test into
a value-free test by manually replacing values with variables.
Although value replacement needs to be done only once, it
still poses an overhead to the test automation process. But
how much? Our corpus of 154 instructions required 49 re-
placements, roughly 1/3 of the instructions. We believe this
overhead is acceptable for a do-only-once task. However, we
would like to automate value replacement as much as possi-
ble.

Label replacement looks like an arbitrary stage. But besides
normalizing seemingly different steps, replacing labels can
help us to avoid tuple extraction mistakes. Consider the step
click Click Here and win an IPod . This step just in-
structs the user to press a (suspicious) “Click Here and win an
IPod” button. But this label will fool the segmentation stage,
resulting in two tuples: (click, Click Here, •) and (win, IPod,
•). By replacing this step’s label we get click LABEL(Click
Here and win an IPod) , from which we can extract the
expected (click, Click Here and win an IPod, •) tuple.

Tuple extraction might deliver the wrong results occasion-
ally. Our tuple extraction algorithm does not attempt to do
error detection, instead we simply assume that extraction er-
rors will surface at execution time. Our experiments show
that this is the case. All the errors we found manifested as
non-existent or ill-formed targets. Our interpreter is prepared
to report inexistent targets as well as unrecognized actions
(which besides an error, might signal that the action set needs
to be extended). Although possible, we have not encountered
steps wrongly converted to tuples denoting another valid or
ambiguous instruction.

Our approach has a number of limitations that we plan to ad-
dress in future work. The most immediate are:

• Processing arbitrary position relations (as in click
the activate checkbox in the 10th row), and us-
ing such relations to adjust ambiguous test steps.

• Interpreting instructions not referring to actions on the
GUI, such as verification steps.

• Handle high-level steps representing multiple actions with-
out stating them explicitly (e.g., add item to shopping
cart). There is work in this area that we plan to use as a
starting point for this task [2].

In addition, we would like to add more variety to our train-
ing data, since writing styles can vary wildly among testers.
The more and diverse the training data, the better our chunk
annotators will handle such variance. We also plan to work
on a more robust algorithm for label replacement, based on
named entity recognition – despite being unlikely in practice,
there are pathological cases that challenge label replacement,
e.g., a step like click the "click the" . A similar entity
recognition-based strategy could help to automate the value
replacement stage as well.

RELATED WORK
Thummalapenta et al. [20] describe an approach for func-
tional test automation based on brute force search. They
implemented a heuristic procedure that tries all the possible
interpretations of an instruction until one can be executed,
backtracking in case of failure. But using heuristics can be
problematic for tests including “unseen” instructions, since
they will need to modify their heuristics in order to adapt to
new cases. Our machine learning-based tuple extraction al-
gorithm is easier to extend. We simply have to enrich our
training set with new examples and retrain, without any need
to modify our algorithm. We believe that the two approaches
can be combined to get a more robust and easily extensible
test automation system.

Lau et al. [12] experiment with 3 approaches (keyword, gram-
mar and machine learning-based) to compute (A, T, D) tu-
ples from a corpus of written how-to instructions. The corpus
was obtained by crowdsourcing the task of writing how-to
instructions on Amazon’s Mechanical Turk. Our tuple ex-
traction algorithm aims to solve the same problem, but with
some important differences. Our algorithm utilizes domain
knowledge about the application to identify labels in an in-
struction. In addition, we do step segmentation, while their
work assume that how-to instructions are already segmented.
Finally, we bridge the gap between tuple extraction and exe-
cution by providing an interactive tuple interpreter algorithm.

Branavan et al. [2] present a system to execute hand-written
instructions. The salient feature of their work is the distinc-
tion between low-level and high-level instructions (i.e., in-
structions specifying a goal to achieve without explicitly stat-
ing all the required steps). The authors process low-level in-
structions by means of reinforcement learning, using a log-
linear policy function to map instructions to actions. For
high-level instructions, the authors map them into a sequence

of low-level instructions by means of an extension to the orig-
inal reinforcement learning model. Adopting these ideas for
processing high-level instructions would be enormously ben-
eficial to our approach. For example, we could process a
high-level instruction like login as Admin by mapping it
into the low-level steps enter username Admin , enter
password Admin, and click Login.

Other authors also explore the use of machine learning tech-
niques to process natural language navigation instructions.
Chen and Mooney [4] discuss a system that transforms nat-
ural language directions into an executable plan. They use a
corpus of (instruction, actions, world state) tuples to learn a
parser translating instructions into navigation plans. Kollar
et al. [10] present a system that follows natural language di-
rections. They use conditional random fields [11] to derive
a linguistic structure (spatial direction clauses) from a set of
directions. Their system uses these spatial direction clauses
to infer an optimal path in a map, according to a model based
on the meaning of spatial prepositions. Shimizu [16] uses
machine learning to chunk a sequence of instructions in natu-
ral language, inferring the action taken by each step from the
chunk labels. This scheme is later improved by Shimizu and
Haas [17], introducing the notion of “template” labels which
can be parametrized with so-called slot fillers. In these two
systems, the goal is to guide a robot to some destination. The
domain of discourse is limited to moving straight to the end
of a hallway, turning right or left, or entering some door. We
rely on similar techniques for extracting tuples from a test
step, but on a larger scale: we handle several kinds of actions
and a broader variety of targets.

There is a large body of work proposing techniques for gen-
erating software artifacts from textual descriptions. Tichy et
al. [21] argue that progress in natural language processing
will leverage the construction of tools for deriving test cases,
UML models and source code from natural language input.
Fantechi at al. [7] utilizes natural language analysis to per-
form quality evaluation of use cases. Sinha et al. [19] present
an engine for use case translation and analysis. This linguis-
tic engine is used to implement Text2Test [18], a platform for
authoring and verifying test cases.

The idea of interpreting manual tests described using natural
language stems from CoScripter [13], a system for record-
ing and automating actions taken on a web application. Our
machinery for identifying labels in test steps and resolving
targets at runtime is based on CoScripter’s label finding algo-
rithms and heuristics.

CONCLUSIONS
We presented an approach to functional test automation, con-
sisting of an algorithm for extracting the actions denoted by
a test step and an interpreter for executing such actions with
user guidance. We performed a series of experiments on our
prototype in order to quantify the effectiveness of our ap-
proach, as well as to analyze how much user intervention our
approach requires in practice.

With an F1 measure above 90% in the step segmentation and
annotation stages, we believe that our tuple extraction algo-

rithm can be useful in practice. Our last experiment shows
that approximately 70% of the 182 test steps of our test cor-
pus can be executed without user intervention. We think that
these are good indicators of the feasibility and potential use-
fulness of our approach.

For many organizations manual functional testing is a nui-
sance they are used to, mainly because of the shortcomings
in current tools for test automation. We believe that the con-
tributions in this paper constitute a step towards improving
current functional test automation technology.

ACKNOWLEDGMENTS
We thank S. Tummalapenta for his help and the anonymous
reviewers for their insightful comments.

REFERENCES
1. Abney, S. P. Parsing by chunks. In Principle-Based

Parsing: Computation and Psycholinguistics (1991),
257–278.

2. Branavan, S. R. K., Zettlemoyer, L. S., and Barzilay, R.
Reading between the lines: learning to map high-level
instructions to commands. In Proc. of the 48th Annual
Meeting of the Association for Computational
Linguistics, ACL ’10 (2010), 1268–1277.

3. Brill, E. A simple rule-based part of speech tagger. In
Proc. of the third conference on Applied natural
language processing, ANLC ’92 (1992), 152–155.

4. Chen, D. L., and Mooney, R. J. Learning to interpret
natural language navigation instructions from
observations. In Proc. of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (2011).

5. Cortes, C., and Vapnik, V. Support-vector networks.
Mach. Learn. 20 (1995), 273–297.

6. Dustin, E., Rashka, J., and Paul, J. Automated software
testing: introduction, management, and performance.
Addison-Wesley Longman Publishing Co., Inc., 1999.

7. Fantechi, A., Gnesi, S., Lami, G., and Maccari, A.
Application of linguistic techniques for use case
analysis. In Proc. of the 10th Anniversary IEEE Joint
intl. conf. on Requirements engineering, RE ’02 (2002),
157–164.

8. Gouveia, D., Davis, C., Saracevic, F., Bocarsly, J.,
Chirillo, D., and Quesada, L. Software Test Engineering
with IBM Rational Functional Tester: The Definitive
Resource. IBM Press, 2009.

9. Kit, E., and Finzi, S. Software testing in the real world:
improving the process. ACM Press/Addison-Wesley
Publishing Co., 1995.

10. Kollar, T., Tellex, S., Roy, D., and Roy, N. Toward
understanding natural language directions. In Proc. of

the 5th ACM/IEEE intl. conf. on Human-robot
interaction, HRI ’10 (2010), 259–266.

11. Lafferty, J. D., McCallum, A., and Pereira, F. C. N.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc. of the
18th intl. conf. on Machine learning, ICML ’01 (2001),
282–289.

12. Lau, T., Drews, C., and Nichols, J. Interpreting written
how-to instructions. In Proc. of the 21st intl. joint conf.
on Artificial intelligence (2009), 1433–1438.

13. Leshed, G., Haber, E. M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in
the enterprise. In Proc. of the 25th annual SIGCHI conf.
on Human factors in computing systems, CHI ’08
(2008), 1719–1728.

14. Manber, U., and Myers, G. Suffix arrays: a new method
for on-line string searches. SIAM J. Comput. 22 (1993),
935–948.

15. Ramshaw, L. A., and Marcus, M. P. Text chunking using
transformation-based learning. In Proc. of the Third
Annual Workshop on Very Large Corpora (1995), 82–94.

16. Shimizu, N. Semantic discourse segmentation and
labeling for route instructions. In Proc. of the 21st intl.
conf. on Computational linguistics, COLING ACL ’06
(2006), 31–36.

17. Shimizu, N., and Haas, A. Learning to follow
navigational route instructions. In Proc. of the 21st intl.
joint conf. on Artificial intelligence (2009), 1488–1493.

18. Sinha, A., Jr., S. M. S., and Paradkar, A. Text2Test:
Automated inspection of natural language use cases. In
Proc. of the 2010 3rd intl. conf. on Software Testing,
Verification and Validation, ICST ’10 (2010), 155–164.

19. Sinha, A., Paradkar, A. M., Kumanan, P., and Boguraev,
B. A linguistic analysis engine for natural language use
case description and its application to dependability
analysis in industrial use cases. In DSN (2009), 327–336.

20. Thummalapenta, S., Sinha, S., Mukherjee, D., and
Chandra, S. Automating test automation. Tech. Rep.
RI11015, IBM Research, 2011.

21. Tichy, W. F., and Koerner, S. J. Text to software:
developing tools to close the gaps in software
engineering. In Proc. of the FSE/SDP workshop on
Future of software engineering research, FoSER ’10
(2010), 379–384.

22. Tjong Kim Sang, E. F., and Buchholz, S. Introduction to
the CoNLL-2000 shared task: chunking. In Proc. of the
2nd workshop on Learning language in logic and the 4th
conf. on Computational natural language learning -
Volume 7, ConLL ’00 (2000), 127–132.

	Introduction
	Problem Definition
	Converting Test Steps
	Interpreting Test Steps

	Value Replacement
	Tuple Extraction
	Label Replacement
	Step Segmentation
	Step Annotation
	Tuple Generation

	Tuple Interpretation
	Evaluation
	Experiment 1: Step Segmentation
	Experiment 2: Step Annotation
	Experiment 3: Contribution of Label Replacement
	Experiment 4: Interpreting Tuples

	Discussion and Future Work
	Related Work
	Conclusions
	Acknowledgments
	REFERENCES

