
Learning Procedures for Autonomic Computing

Tessa Lau, Daniel Oblinger, Lawrence Bergman, and
Vittorio Castelli

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
tessalau@us.ibm.com

Corin Anderson
Google

2400 Bayshore Parkway
Mountain View, CA 94043

1 Introduction

Today’s skilled IT professionals bring to bear an enormous
amount of knowledge about how systems are configured, how
they function on a day-to-day basis, and how to repair them
when they break. However, there are not enough skilled IT
professionals to meet the ever-growing demand. Autonomic
computing offers a way out of this dilemma: offload the re-
sponsibility of managing complex systems onto the systems
themselves, rather than relying on limited human resources.

This problem raises a large challenge: how will we trans-
fer the knowledge about systems management and configu-
ration from the human experts to the software managing the
systems? We believe this problem is fundamentally a knowl-
edge acquisition problem. Our approach to solving this prob-
lem draws on machine learning and knowledge representa-
tion. Our core idea is based on programming by demonstra-
tion: by observing several human experts each solve a similar
problem on different systems, we generalize from traces of
their activity to create a robust procedure that is capable of
automatically performing the same task in future instances.
What will make it work is the observation that solutions to
similar problems share similar sub-procedures. By capturing
these nuggets of problem-solving knowledge from multiple
experts, we form a robust procedure that captures the impor-
tant parts of the procedures executed by all of the experts.

We are currently employing this approach to acquire desk-
side technical support procedures, such as upgrading a net-
work card, troubleshooting email problems, and installing a
new printer. Our system captures traces of multiple desk-side
support representatives as they perform one task, such as di-
agnosing a dysfunctional network adapter, under a variety of
operational conditions. From these traces, our system gener-
alizes and aligns the traces into a single general procedure for
repairing network adapters. An important feature of our ap-
proach is that it works across applications, by instrumenting
at the Windows operating system level.

This paper describes our formulation of this problem as
a machine learning problem. First we the problem and de-
scribes how various problem characteristics affect the dif-
ficulty of the learning problem. We then outline the sub-
problems we have identified, and describe our approach to
each one. Finally, we conclude with a summary of current
results and directions for future work.

2 Procedural knowledge acquisition
We formulate the problem of procedural knowledge acquisi-
tion as follows.

Given as input one or more traces of an expert’s
keyboard and mouse actions as she demonstrates
a procedure, output a procedure model that, when
executed on a new system, performs the same task.

Our approach to this problem is based on machine learn-
ing: given traces of a procedure’s execution behavior, induce
the procedure. We are also concerned with knowledge rep-
resentation (how to represent a procedure, a procedure step,
and the state of the world) and procedure execution (taking a
generalized procedure model and mapping it into the concrete
actions required to perform the procedure on a new system).

Clearly, the type of procedure as well as the quality of the
traces determines how difficult it will be to construct the pro-
cedure model. We have identified a number of problem char-
acteristics that affect problem difficulty:

• Procedure structure complexity: A straight-line pro-
cedure with no deviations from the main path will be
easier to learn than a procedure that has many condi-
tional actions or alternative paths.

• Trace noisiness: Execution traces in which the ex-
pert performs extraneous steps, or in which unexpected
events happen asynchronously, will make it more diffi-
cult to learn.

• Incremental or batch learning: The choice of learning
algorithm depends on how it is going to be used. In-
cremental learning, where a procedure model is updated
dynamically as traces are created rather than overnight
in a batch process, places different constraints on the al-
gorithms that may be used to learn procedures.

• State observability: The choice of what action to per-
form at each step of the procedure depends on how much
information is available to the system to make that deci-
sion. If the choice can be made based on some informa-
tion displayed on the user’s screen, the problem is easier
than if the choice is made based on some hidden vari-
able, perhaps some state stored in the expert’s mind.

In the next section, we describe some of the research chal-
lenges we have identified in working on this problem, and
outline the approaches we have taken on each challenge.



3 Research challenges
Given a trace of low-level events, the first challenge is toseg-
mentthe trace in order to identify procedure steps, procedure
components, and boundaries between one procedure and the
next. Next wegeneralizetraces, mapping from the concrete
actions performed on specific windows to a more generalized
representation that will work across systems. With several
traces, a further challenge is to simultaneouslyalign portions
of the traces such that subsequences of similar functionality
are paired together. Finally, anexecutionprocess takes the
generalized procedure and runs it on the target system, se-
lecting the correct action to perform at each step. The follow-
ing subsections briefly describe our approach to each of these
research challenges.

3.1 Segmentation

Our system captures expert behavior by instrumenting the
Windows operating system at a low level. This low level
instrumentation is necessary to achieve our goal of learning
cross-application procedures, and thus does not rely on in-
strumentation of every application used in the procedure. Our
instrumentation provides information about the windows dis-
played on screen (window titles, button labels, field contents,
etc.), mouse and keyboard actions along with the target win-
dow of each action, and notification when windows are cre-
ated, modified, or destroyed. For example, suppose the user
launches an application by double-clicking on an icon on the
desktop. Our instrumentation reports that the user depressed
and released the mouse button twice at location (5, 8) in win-
dow with id 10060, then reports a large number of window-
creation events, one for each widget in the application being
started.

In addition to recording user actions, an autonomic proce-
dure must also recognize system actions in order to monitor
the expected effects of each user action. For example, if the
application failed to appear after the user double-clicked on
the icon, then the next steps in the procedure should not be
taken until this problem has been resolved.

We use the termsegmentationto refer to the translation of
a low-level event stream into a stream of high-level, seman-
tically meaningful events. What makes this problem chal-
lenging is that events from different high-level actions can
be interleaved in the low-level stream. For example, suppose
our user double-clicks to launch an application, and then an
instant message pops up on her screen, and finally the appli-
cation shows up. Decoding the low-level stream to figure out
what actually happened, and to determine the cause and effect
of her actions, is the segmentation challenge.

Our approach to segmentation is to employ grammar pars-
ing techniques. We have defined a number of grammar rules
expressing high-level actions in terms of sequences of low-
level events. For instance, the sequence of pressing and re-
leasing key ”A”, then pressing and releasing key ”B”, is
parsed into the high-level action ”type string AB”.

This approach fails when the high-level actions are inter-
leaved in the event stream. For instance, if a user double-
clicks on an icon to launch an application and then performs
a different action before the application appears on screen, a

grammar-based approach will have difficulty making sense of
the sequence.

In addition, we wish to segment high-level action streams
into procedures and sub-procedures. For example, the event
stream described above may be part of a single ”launch ap-
plication” step, which may be in turn be part of the ”find
out whether Service Pack 3 is installed” subtask, which may
be part of the ”diagnose network adapter” procedure. Pre-
vious systems required the user to identify the start and end
of each procedure (by pressing a button on a GUI, for exam-
ple). However, this may prove to be too much of a burden as
procedures become more complex and are logically broken
down into sub-tasks, some of which may be common across
multiple procedures. For example, a procedure for diagnos-
ing email problems may include a sub-procedure for check-
ing whether the workstation is able to connect to the network.
Manually indicating the boundaries of each of these subtasks
is certainly going to require too much user effort. One re-
search goal in our work is to consider automated approaches
to the segmentation problem.

3.2 Generalization

A segmented trace is a sequence of high-level actions that ref-
erence specific windows in the system used for the demon-
stration. Generalization is the process of identifying salient
features in the trace that uniquely describe the actions at a
level of detail that enable the trace to be run in a different
environment. For instance, when the user double-clicked at
location (5, 8) in window with id 10060, a generalized ver-
sion of this action (that is portable to more systems) could
be ”double-click on the icon on the desktop named My Com-
puter”.

In some cases, there may be more than one generalization
of a particular user action. For instance, if a user types the
string ”tomato” into a text field, she may be entering her user-
name, her password, or a constant string. If the wrong gener-
alization is selected, the procedure could fail when run by a
user with a different username and password.

Our approach to action generalization is based on a ma-
chine learning technique called version space algebra[6],
a framework for efficiently enumerating the space of possi-
ble generalizations for concrete actions, and maintaining the
set of consistent generalizations given one or more exam-
ples of the target action. For example, if one user enters the
string ”tomato” and the next enters the string ”cabbage”, the
learning algorithm discards the hypothesis ”type the constant
string tomato”, although the hypothesis ”type the user’s pass-
word” is still plausible.

A more advanced form of generalization is needed to rec-
ognize procedures that differ based on the version of the oper-
ating system being run. For instance, the organization of the
network control panels differs across versions of Windows.
A procedure to adjust one setting on Windows 98 requires
different steps than a procedure to adjust the same setting
on Windows XP. Automatically recognizing and generalizing
procedures that differ at this level remains an area for future
work.



3.3 Alignment
Our goal is to learn robust procedures from traces gener-
ated by different experts, under different conditions. In these
cases, traces may contain steps in different order, or traces
in which a whole sequence of steps has been added (perhaps
because a previous step failed, and the expert had to recover
from that failure before continuing with the procedure). A ro-
bust model of the procedure must capture both the well-worn
path through the procedure (the common case, in which all
the steps succeed) as well as less common paths in which one
or more of the procedure steps results in an unexpected error.

Thealignmentproblem is to recognize and align together
subsequences of similar functionality across multiple traces,
so that multiple examples of the same step in different traces
can be used to generalize the step. For example, suppose one
expert performed an extra set of actions at one point during
the trace (for instance, if a command produced an unexpected
outcome) before returning to the main procedure. When the
expert returns to the main path, alignment is necessary to both
detect the deviation as well as line up future actions in this
trace with the main path demonstrated by other experts for
this procedure.

We are inspired by previous work in DNA sequence align-
ment. However, unlike with DNA sequences, alignment of
procedure traces is intimately tied to the generalization pro-
cess. Two experts performing similar steps (e.g., typing a
string into a text field) might both be entering their pass-
word into a login dialog. Alternatively, one of them might
be changing the host name of this computer while the other
is setting the mail server in an email application. Clearly, the
alignment of these steps in the procedure model depends on
how well they generalize, while the generalizations depend
on which steps are aligned together.

Our approach to the combined alignment/generalization
problem is based on Input/Output Hidden Markov Mod-
els[1], which provide a mechanism for considering all possi-
ble alignments and iteratively selecting the locally best align-
ment. The output of an IOHMM is a probabilistic finite state
machine with classifiers at each node that predict the next ac-
tion and the next node, given the current state of the world.
The classifiers capture the generalization of actions, while the
probabilistic finite state machine captures the different possi-
ble paths through the procedure.

3.4 Execution
A learned procedure must beexecutedon a new machine to
accomplish the task modeled in the procedure. Execution is
more than simply a matter of replaying a sequence of actions
one by one, however. First, the procedure may contain condi-
tional steps that should only be executed under certain condi-
tions, such as steps that depend on the installed version of the
operating system or specific drivers. Second, the system must
monitor the result of each action to detect unexpected failures,
by matching the observed result of the action against the ex-
pected result contained within the procedure. Asynchronous
events, such as new mail notification or instant message pop-
ups that grab the keyboard focus, can interfere with procedure
playback. Third, the procedure may be run on a system with
different characteristics than the training systems (such as a

production server rather than a test server, or an upgraded ver-
sion of the operating system, or simply one with more users
and hence more load). All of these factors must be taken into
account to ensure that the procedure can be run correctly on
the new system.

In addition, one of our goals is to interleave learning with
execution. As a user is executing a procedure on a new sys-
tem, she may reach a point where an unexpected failure oc-
curs that is not represented in the procedure. If the user knows
how to recover from this failure, she can demonstrate the re-
covery procedure as she goes, and these steps become part of
the procedure so that future users will benefit from a more
robust procedure. Dynamically updating procedure models
even during execution time will enable an autonomic proce-
dure to stay up-to-date even as conditions change over time.

4 Related work
Previous programming by demonstration systems[3; 7] re-
lied on instrumenting a single application in order to track
user and system actions at a very high level. For autonomic
computing, however, we cannot assume that all the necessary
applications will be able to be instrumented, thus forcing us
to work with the lower-level event stream available from Win-
dows. In addition, no previous programming by demonstra-
tion system attempted to automatically learn complex condi-
tional procedures from multiple traces.

Our approach is related to planning, specifically contin-
gent planning[8]. Contingent planners formulate a plan (a
sequence of actions) that will achieve a goal, even in the pres-
ence of uncertainty about the state of the world. The gen-
erated plans employ sensing actions to determine the world
state before proceeding to the next action. The goal of our
research is also to produce contingent plans. However, in-
stead of reasoning about the desired state of the world and
using an action model to synthesize a sequence of actions to
achieve the goal state, our system uses demonstrated traces to
bias the search for plans. Rather than having an expert define
the desired state of the system, we have the expert demon-
strate how to get there, and learn from the actions the expert
performed along the way.

Programming by demonstration is also similar to previous
work in plan recognition[2; 4; 5]. The main difference is that
instead of defining a plan library and matching an agent’s ac-
tions against a set of known plans, our approach allows an
agent to define a new plan by demonstration. Our approach
also supports plan refinement based on the incorporation of
new demonstrations of the same plan. In addition, unlike
most plan recognition systems, our system generalizes indi-
vidual steps in the plan from the concrete actions performed
by the agent to a higher-level action description.

The segmentation problem is similar to previous work on
learning plan operators from traces[9]. Wang makes the
assumption that each plan operator results in a single state
change, and relies on the expert identifying correct and com-
plete descriptions of the state before and after each action.
In our case, however, each plan operator (such as launching
an application) results in a potentially large number of state
changes (where each is reflected by a low-level event, such



as a widget in a window being created). In addition, asyn-
chronous events (such as occur in the real world, unlike a
simulator) make our problem more challenging.

5 Summary and implications for autonomic
computing

We have outlined a research agenda for automatically acquir-
ing procedural knowledge for use in autonomic systems. Our
research is based on learning procedures by observing experts
perform these procedures on live systems, and dynamically
building a procedure model that can be executed on a new
system to repeat the same task. Over time, as more traces
are collected of the same procedure, the procedure model is
updated. This dynamic learning process also enables the pro-
cedure to adapt to changing conditions over time.

The success of autonomic computing relies on systems’
ability to manage themselves and react to changing conditions
over time. Right now, knowledge about how to maintain and
configure systems is locked within the minds of skilled ex-
perts. Our research goal is to facilitate knowledge acquisition
from these experts, simply by watching them do what they do
best, and produce intelligent systems that embody this knowl-
edge.

References
[1] Y Bengio and P Frasconi. Input-output hmms for se-

quence processing.IEEE Transactions on Neural Net-
works, 7:1231 – 1249, (1996).

[2] E. Charniak and R. Goldman. A probablistic model of
plan recognition. InProceedings of the Ninth National
Conference on Artificial Intelligence, volume 1, pages
160–5, July 1991.

[3] Allen Cypher, editor.Watch what I do: Programming by
demonstration. MIT Press, Cambridge, MA, 1993.

[4] B. Goodman and D. Litman. On the interaction between
plan recognition and intelligent interfaces. InUser Mod-
eling and User Adapted Interaction, volume 2, pages 83–
115, 1992.

[5] H. Kautz. A Formal Theory Of Plan Recognition. PhD
thesis, University of Rochester, 1987.

[6] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Pro-
gramming by demonstration using version space algebra.
Machine Learning, 2001. In submission.

[7] H. Lieberman, editor.Your Wish is My Command: Giv-
ing Users the Power to Instruct their Software. Morgan
Kaufmann, 2001.

[8] L. Pryor and G. Collins. Planning for contingencies: A
decision-based approach.J. Artificial Intelligence Re-
search, 1996.

[9] Xuemei Wang. Learning by observation and practice: An
incremental approach for planning operator acquisition.
In Proceedings of the 12th International Conference on
Machine Learning, 1995.


