
Similarity-Based Alignment and Generalization

Daniel Oblinger, Vittorio Castelli, Tessa Lau, and Lawrence D. Bergman

IBM T.J. Watson Research, New York
oblio,vittorio,tessalau,bergmanl@us.ibm.com

Abstract. We present a novel approach to learning predictive sequen-
tial models, called similarity-based alignment and generalization, which
incorporates in the induction process a specific form of domain knowl-
edge derived from a similarity metric of the points in the input space.
When applied to Hidden Markov Models, our framework yields a new
class of learning algorithms called SimAlignGen.

We discuss the application of our approach to the problem of program-
ming by demonstration–the problem of learning a procedural model of a
user’s behavior by observing the interaction an application GUI.

We describe in detail the SimIOHMM, a specific instance of SimAlignGen

that extends the known Input-Output Hidden Markov Model (IOHMM).
We use the SimIOHMM in empirical evaluations that demonstrates the
dependence of the prediction accuracy on the introduced similarity bias,
as well as the computational gains over the IOHMM.

1 Introduction

Many domains require building predictive models from multiple observed data
sequences. Examples from the biological domain include protein and DNA se-
quence alignment or prediction. Many domains with a temporal dimension in-
volve building predictive models from sequential data, examples in the finan-
cial domain include market performance prediction, and risk analysis. In the
computer networking domain, models of network performance or detection of
illegal intrusions have also been learned from observed data sequences. Learn-
ing approaches for these domains (like Hidden Markov Model learning [1]) rely
primarily on the sequence data itself for the learning and utilize little (if any)
additional domain knowledge. In this paper we investigate a particular form of
domain knowledge that we call similarity knowledge. We show how this knowl-
edge can be employed in learning predictive models from sequential data, and
empirically measure the impact of utilizing this additional source of knowledge.

A second thrust of this paper is to present a novel approach for using se-
quence modeling techniques like HMM learning for the problem of programming
by demonstration [2, 3] described in the second section. In this application of
sequence learning we will show that similarity knowledge is both available in the
PBD domain, and that its use improves learning performance.

Contributions of this paper include:

– We present a novel application of traditional sequence alignment algorithms
to the problem of programming by demonstration in order to learn proce-
dures with complex structure.

– We define the SimAlignGen class of algorithms. This class extends traditional
Hidden Markov Models by adding an additional source of bias: a similarity
function over the inputs.

– We present an instance of an SimAlignGen class, called SimIOHMM, which
has been implemented as part of a programming by demonstration system
on the Microsoft Windows platform.

– We provide an empirical evaluation of SimIOHMM’s ability to learn a real-
world procedure from demonstrations, and show that the addition of the
similarity function results in a significant performance improvement.

2 An HMM approach to PBD

For the purposes of this paper, we define programming by demonstration as the
problem of taking a set of demonstrations and generating a procedure model con-
sistent with those demonstrations. Each demonstration is a sequence of events,
including user actions and changes to the application GUIs. A procedure model
is consistent with a demonstration if it correctly predicts the actions in the se-
quence given the prior events in that sequence. Existing PBD systems work well
when there is a fixed number of steps in the procedure [4] or when the proce-
dure author can identify the specific step to be generalized [5]. However, these
assumptions are violated when a procedure grows to a large number of steps and
contains complex structure, such as conditional branches. Traditional sequence
learning algorithms like HMMs seem appropriate in these cases since they are
focus on the problem of identifying optimal alignment of sequences where no
simple one-to-one fixed alignment is known a priori.

In this section we briefly outline the primary components necessary for apply-
ing these sequence alignment algorithms in the PBD context. Figure 1 provides
a block diagram of our PBD system.

According to this Figure a human user demonstrates procedures by perform-
ing actions, such as clicking the mouse or pressing keyboard keys, on an appli-
cation’s graphical user interface. In response, that application performs actions,
such as creating/deleting windows, or updating their contents. The instrumen-
tation component captures both user and application actions.

An abstraction component converts the stream of events recorded by the in-
strumentation into a sequence of snapshot-action pairs, called a trace. Logically,
a snapshot-action pair represents the complete content of the GUI at a point
in time, coupled with the action the user took in that state. This snapshot-
action representation is natural for use with inductive learning since it reduces
the problem of learning a procedure to the problem of predicting the user ac-
tion from the content of the GUI (and perhaps its history). The abstracted
representation differs from the original event representation in four ways. First,
the widget hierarchy is flattened in a similar manner to flattening of the DOM

Learning

Human User

Application GUI

Instrumentation Automated Execution

Abstraction
Pairs

State−Action

Demonstration
Repository

Learned Procedure

Underlying Apps

Fig. 1. Block diagram of the SimAlignGen approach.

by XPath expressions [6]. Second, using heuristics, a subset of window features
(such as the window title) is selected from the full set available. Third, the in-
cremental changes to the GUI reflected in the event stream are converted into
snapshots of the system state. Fourth, low-level events, such as “mouse down”
are heuristically grouped into higher-level actions, such as “double click.”

This ability to learn from independently recorded demonstrations is a feature
of this approach that differentiates it from existing work in PBD.

3 The SimAlignGen family of algorithms

In the previous section we see that the learning component is provided as a set
of action sequences just as one would expect for Hidden Markov Model learning,
(actually a sequence of snapshot-action pairs as expected of Input/Output Hid-
den Markov Model learning.) might produce. In the PBD domain, however, the
visual cues prevalent on Graphical User Interfaces provide an additional source
of knowledge which can be used to augment the sequence data employed by
traditional HMM learning. Unlike HMM processes found in nature, the features
presented by a typically GUI were explicitly designed to illuminate the state of
the underlying process generating those features. Further those features were de-
signed to facilitate human mediated processes executed on that GUI. The GUI is
designed to visually distinguish importantly different states in the underlying ap-
plication, and make different steps in a procedure executed on that GUI visually
distinct as well. In this paper we consider control panel-based configuration tasks
in Microsoft Windows. In that domain for example, distinct steps in a typical
configuration procedure will involve GUI windows that have different geometric
configurations as well as distinctive title bars. Imagine several demonstrations
of a process where the user browses the web to obtain their DNS server’s IP
address, and then enters that IP address into the appropriate control panel. At

a glance an onlooker could easily distinguish the web browser steps from the
control panel steps by matching visual cues from the different demonstrations.
We provide this visual similarity knowledge to our family of algorithms as a
fixed similarity metric which returns a real-valued score measuring “similarity”
between two captured GUI snapshot action pairs (S,A). Formally:

Similarity : ((S × A) × (S × A)) → ℜ+.
Thus, instances of the SimAlignGen family of algorithms accept an input set

of demonstrations as described in the previous section, and a fixed real-valued
similarity function over the snapshot-action pairs in that dataset as described in
this section. The algorithm then aligns the steps in the demonstrations in order
to produce an executable model that can predict or reproduce user actions based
on observed states in the GUI.

Formally, the input dataset is composed of a set of demonstrations (called
traces). Each trace is a sequence of <GUI-snapshot,User-Action> pairs called
snapshot-action pairs. The alignment of a set of demonstration traces is a par-
tition of the snapshot-action pairs in all the traces. A useful alignment for our
purposes is one that groups together similar snapshot-action pairs, such that
each set of the partition corresponds to what a human would think of as a
step in the procedure model. SimAlignGen algorithms align the snapshot-action
pairs in those traces by simultaneously employing three sources of constraint
in its search for an alignment. This partitioning of the input data into a set of
procedure steps, in turn, drives the generation of an executable model of the
underlying procedure being learned. These three sources of constraint are listed
below:

1. The alignment of the steps in the demonstrations should preserve transitions
between successive steps. For example, let demonstration 1 consist of step
A followed by step B and demonstration 2 consist of step A′ followed by
B′; then aligning A with A′ and B with B′ is a good alignment, since it
preserves the ordering of transitions within the demonstrations.

2. The alignment of snapshot-action pairs should also yield sets that can be
generalized—within a partition set, actions should be predictable from their
corresponding snapshots by an appropriately induced mapping function.

3. The snapshots in aligned snapshot-action pairs should be similar according
to the provided domain-specific similarity metric.

Constructing a learner with the first two biases—transition preservation and
generalization—is a difficult problem for which no optimal algorithm exists. One
solution consists of iteratively alternating two steps: finding the best alignment
of the training data consistent with a given transition and generalization struc-
ture, and finding the best transition and generalization structure consistent with
a given alignment of the training data. If we represent the alignment by associ-
ating an integer with each snapshot-action pair (the index of the partition set to
which it belongs) or, more generally, a probability distribution over the partition
sets, we can immediately reduce the iterative algorithm to the Baum-Welch al-
gorithm [7]. Baum-Welch is an expectation-maximization (E-M) algorithm used

to induce discrete Hidden Markov Models from sequences of symbols [1]. We
interpret the expectation step as a way of determining the best alignment of
the sequences relative to a given HMM, and the maximization step as a way of
inducing the best procedure model given an alignment.

For use in PBD, however, it is not sufficient to summarize the user’s actions as
a probability distribution over the space of actions as a traditional HMM would
do. We cannot simply learn that two-thirds of users press the “Add” button
and the remaining users press “Remove” at some particular procedure step; we
must learn a function that predicts when each is appropriate. In our approach,
we assume this choice is typically dependant on features observed in the GUI,
that is, both the next HMM state and the next action conditionally depend on
the current content of the GUI given the current Markov state. Frasconi and
Bengio [8] introduced an extension to HMMs, called the Input-Output Hidden
Markov Model, or IOHMM, that satisfies this assumption. IOHMMs predict the
next state and the next output symbol as a function of the current state and of
the current input symbol. In the PBD context, the input symbol is the snapshot
of the state of the GUI, and the output is the observed user action. Both are
combined as a snapshot-action pair.

The third source of constraint above cannot be employed by either HMM or
IOHMM algorithms, yet as we discussed it is a natural form of knowledge in
the PBD domain. These algorithms do not take any form of explicit knowledge
about the domain, rather they rely entirely on the dataset provided (and possibly
parameter settings on the algorithms themselves).

SimAlignGen algorithms extend Hidden Markov Model induction by incor-
porating this similarity domain knowledge as a bias on the alignments which the
algorithm considers in its search for a predictive model of the observed data.

In the next section we detail a specific instance of the SimAlignGen family,
the SimIOHMM.

In this section we formally define the SimIOHMM by describing how it differs
from the standard IOHMM. To this end, we refer to Bengio and Frasconi’s
paper [9] and follow their notational conventions. As customary, vectors are
denoted by boldface characters, boldface symbols with subscripts are elements
of a vector, and plain-text symbols denote scalar quantities. Random variables
are in upper case, while values in lower case. The training set contains sequences
of input-output pairs, or, equivalently, pairs consisting of an input sequence u

and a corresponding output sequence y.

3.1 Bengio and Frasconi’s IOHMM

The goal of a IOHMM is to model the conditional distribution of Y given U as
a finite-state process [10, Chapter 1] (also known as a Hidden Markov Model),
namely, by postulating the existence of a hidden variable, the state X , taking
value in a finite set X , such that

P
[

(Ut,Yt, Xt) | {(Uj ,Yj , Xj)}
t−1

j=1

]

= P [(Ut,Yt, Xt) | Xt−1] .

The same structure is inherited by the conditional distribution of the outputs
given the inputs modeled by the IOHMM (namely, P

[

(Yt, Xt) | Ut, {(Uj ,Yj , Xj)}
t−1

j=1

]

)
that can now be written as P [(Yt, Xt) | Ut, Xt−1] . Note that this probability
can be further decomposed as

P [Xt | Ut, Xt−1] P [Yt | Xt,Ut, Xt−1]

= P [Xt | Ut, Xt−1] P [Yt | Xt,Ut] ,

namely, as a conditional transition probability to state Xt given the previous
state and the input at time t, and a conditional probability of the output at time
t given the state and input at time t. Hence, inducing a IOHMM is equivalent to
estimating the initial probability distribution over the states, P [X0] (note that
the first input is observed at t = 1), the transition probabilities P [Xt | Ut, Xt−1],
and the conditional output probabilities P [Yt | Xt,Ut]. The transition an output
probabilities are assumed to be time-independent, namely,
P [Xt=a|Ut=u, Xt−1=b]=P [Xs =a|Us =u, Xs−1 =b] and
P [Yt =y|Xt =x,Ut =u]=P [Ys = y|Xs = x,Us = u],
for every time instants s and t. These assumptions make the IOHMM very
flexible and yet computationally manageable. It turns out that the IOHMM
allows arbitrarily long time-dependence between the input-output pairs, and
is therefore more powerful than a fixed-order Markov model. At the same time,
the IOHMM can be efficiently induced from training data using the Baum-Welch
algorithm, a specialization of the E-M algorithm. The Baum-Welch algorithm
consists of two steps: an Expectation step, in which the training sequences are
aligned to an existing model, and a Maximization step, in which the model is
updated given the alignment.

The IOHMM E-step efficiently computes a probability distribution over the
state space for each input-output pair by means of two steps, called forward
recursion and backward recursion. The forward recursion computes, for each
input-output pair, the joint conditional distributions of the current state, the
current output, and all preceding outputs, given the current input and all the
preceding inputs. The backward recursion computes, for each input-output pair,
the conditional probability of the subsequent outputs given the current state,
the current input, and the subsequent inputs. The probability distributions over
the states are then obtained by multiplying and normalizing the results of the
forward and backward recursions for the corresponding time instant. The results
of the forward and backward recursion are also appropriately combined (via mul-
tiplication and normalization) to estimate the posterior transition probabilities,
namely, the probabilities of transitioning from state i at time t to state j at time
t + 1 given the entire sequence of inputs and outputs.

The M-step efficiently recomputes the initial probability distribution over
the states, the conditional transition probabilities given the current input, and
the conditional distributions of the output given the current state and input
either by maximum likelihood (in which case the Baum-Welch is a bona-fide
E-M algorithm), or by a generic likelihood estimation method (in which case
the Baum-Welch is a Generalized E-M algorithm). Bengio and Frasconi followed

the latter approach, and used neural networks in the maximization step. The
efficiency of the M-step stems from the fact that the global maximization of the
likelihood is performed by separately maximizing the likelihoods at each indi-
vidual state, namely, by finding the parameters that maximize the transition
probabilities and output probabilities at each state given the results of the ex-
pectation step.

3.2 The SimIOHMM

The SimIOHMM extends the IOHMM by further incorporating the bias de-
scribed earlier in this Section. To this end, each hidden Markov state is asso-
ciated with one or more representative inputs, as well as with a transition and
output distribution. The representative inputs come into play during the E-step
and are updated during the M-step, as follows.
The E-Step. The forward recursion is

αi,t = P [yt | Xt = i,ut] S (ut,vi)
∑

ℓ∈X

φi,ℓ(ut)αℓ, t−1, (1)

which adds to [9, Equation(20)] the additional term S (ut,vi), the similarly score
between the input ut and the representative sample vi of state i, that provides
the required bias.

Similarity, the backward recursion is

βi,t =
∑

ℓinX

S (ut+1,vℓ) P [yt+1 | Xt+1 = ℓ,ut+1] ·

· φℓ,i(ut+1)βℓ, t+1, (2)

which again adds a bias term to [9, Equation(22)].1

The bias term S (ut,vi), a similarity score, is designed to concentrate the
distribution over the states at time t onto those states having representative
samples similar to ut. For sake of simplicity, assume that each state has a unique
representative sample. Then S (ut,vi) is computed as follows: first, the distances

{d(ut,vi)}
|X |
i=1

between ut and the representatives of the states are computed;
then these distances are converted into a similarity score by means of a kernel
K(·) (for example, a finite-support decreasing function or a Gaussian):

S (ut,vi) = K (d(ut,vi)) .

The definition of S (·, ·) can be obviously extended to capture the similarities
between input-output pairs, rather than between inputs.

Adding the bias term substantially improves the training time and can im-
prove the classification accuracy, as illustrated in the experiments section.2

1 The small discrepancies with the actual Equation [9, Equation(22)] are due to typo-
graphical errors in the original paper.

2 An attentive reader would notice that Equations (1) and (2) produce scaled proba-
bilities computed in the traditional Baum-Welch algorithm (namely, quantities that

The M-step. The M-step of the SimIOHMM is identical to that of the IOHMM,
with the additional recomputation of representative samples. For each HMM
state, the sample(s) with highest alignment probability becomes the new repre-
sentative state.

4 Experimental Results

We evaluate our SimAlignGen in two ways. We evaluate the utility of using a
similarity bias for learning HMM models in a general setting using synthetic
data where we can vary the “correctness” of similarity data presented. We then
evaluate the predictive performance of this approach in a practical PBD setting
implemented on the Microsoft Windows GUI where we measure the effectiveness
of the SimAlignGen approach as well as utility of the similarity bias in this
context.

4.1 Experiment 1: Effectiveness of similarity knowledge

We measure the performance of SimAlignGen relative to traditional IOHMM
performance as a function of the correctness of the similarity information pre-
sented. We expect the performance of SimAlignGen algorithms to vary as a
function of how well the similarity knowledge matches the process underlying
the generated data. We quantify this degree of match by introducing a similar-

ity correctness score given (1) an underlying generating process, (2) a dataset
generated from that process where each point in the dataset is labeled by the
state that generated it, and (3) a similarity metric that returns a real-valued
similarity score for each pair of points in the dataset. The similarity correctness
score is a number between 0 and 1 that represents the fraction of dataset points
whose nearest neighbor (according to the similarity metric) was also generated
by the same state. Thus a score of 100% would imply the similarity metric cor-
rectly separates all of the dataset points into groups perfectly aligned with the
underlying generating process. Lesser scores are associated with increasing levels
of noise, or misinformation regarding the underlying generating process.

For this experiment, we randomly generate Hidden Markov Models by in-
stantiating a generic HMM template. The template has ten hidden states, each
state’s distribution is composed of two separate randomly generated distribu-
tions of features, actions, and transitions. The output actions are a binary fea-
ture, and the inputs are a pair of binary features. Because of the sparseness in
both the input and output representation, even this relatively modestly sized
HMM process is difficult to learn. We add a feature to the generated dataset
used in computing the similarity between generated snapshot-action pairs. This
feature is the index number for the state generating each data point. We inject
a variable amount of noise or misinformation into the feature, perturbing each
with additive Gaussian noise with zero mean and some chosen variance.

do not sum to one). This fact, however, is immaterial because even in the tradi-
tional Baum-Welch the results of the forward and backward regression are combined
through a normalization step, which takes care of this scaling issue.

0.37144 0.48573 0.60001 0.71429 0.82858 0.94286

0.5

0.6

0.7

0.8

0.9

1

P
re

di
ct

io
n

A
cc

ur
ac

y

Similarity Score

Fig. 2. Accuracy as a function of similarity score

Figure 2 shows the accuracy of SimIOHMM as a function of the correctness of
the provided similarity knowledge. The graph is generated from 180 runs of the
SimIOHMM obtained from three-fold cross validation of 60 randomly generated
HMM models. Each dataset is composed of 400 data-points (20 traces with 20
snapshot-action pairs in each) along with a varying Gaussian noise added to the
similarity feature. A similarity correctness score and an accuracy were computed
for each run. The resulting points are binned according to similarity score and
then averaged to produce the predictive accuracies reported in the box plot. The
box plot shows the median, upper and lower quartile as well as the maximum
and minimum accuracies obtained at each level.

The horizontal line just below 70% represents the average comparative IOHMM
performance (which does not take into account similarity knowledge). As ex-
pected SimAlignGen outperforms IOHMMs when the similarity bias provides
an accurate model of the underlying HMM. Conversely, learning performance is
degraded by a similarity bias that does not represent well the model generating
the data. In this experiment the cross-over point between the performance of
the two algorithms is between 60% and 70% similarity correctness.

This result raises the question of what kind of correctness scores can we ex-
pect in practical applications to programming by demonstration? To test this
we presented a set of eleven Microsoft Window’s users with documentation ob-
tained from a corporate help desk describing a procedure for modifying their
DNS network configuration parameters. We recorded their actions using our
PBD system, and then manually annotated each snapshot-action pair with a
label that specifies the documentation step it corresponds to (if any). Using the
Microsoft Windows-specific similarity measure implemented in our system, we
computed the similarity correctness score for this dataset. This similarity metric

combines several factors, including the previous action taken by the user, and
the text on the title bar of the window with focus, etc. We obtained a similarity
correctness of 88% for this procedure in the Windows domain, much above the
60-70% cross over point for the two algorithms. We expect similarity metrics
will often such give strong hints in the PDB domain where GUIs are involved.
Different parts of an underlying application will intentionally have many redun-
dantly distinguishing GUI features as cues to the user of the application. We
are simply leveraging those redundant cues as a similarity metric in learning
the underlying HMM. Indeed, it was this intuition that GUI interface have such
redundant features that drove us to consider this new class of HMM learning
algorithms in the first place.

4.2 Experiment 2: SimIOHMM training time

In our second set of experiments we measure the performance of the SimIOHMM
as part of a PBD system for capturing procedures on the Microsoft Windows
GUI. In addition to the gains in accuracy demonstrated above, we show that
SimIOHMM can result in substantial reductions in training time and better
scalability as a function of training set size when compared with IOHMMs.
Figure 3 shows the average training time verses number of training traces.

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

number of traces

tr
ai

ni
ng

 ti
m

e
(m

in
)

IOHMM
SimIOHMM

Fig. 3. Training time for IOHMM and SimIOHMM as a function of the number of
training traces.

In the figure, it is apparent that the from the viewpoint of training time,
the SimIOHMM scales much better than the IOHMM, and that the ratio of the
IOHMM training time to the SimIOHMM training time is superlinear in the
number of training traces. The faster training time of the SimIOHMM is due to
the fact that the training sets used to train the classifiers tend to be smaller. The
main reason is that a snapshot-action pair can be aligned only with states having

similar representative samples. A way of measuring this effect is by analyzing
the dispersion of the alignment distributions γn(t) for the training traces once
convergence is reached. A measure of dispersion of a probability distribution is
its entropy. Figure 4 shows the average entropy (in bits) of the alignment at
convergence as a function of the number of training traces. The experiments are
the same used for Figure 3. Due to the similarity bias, the SimIOHMM yields
substantially more concentrated alignment probabilities than the IOHMM, and
the difference between these entropies is an increasing function of the number of
traces. These findings are also confirmed by the analysis of simulated data.

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

number of training traces

al
ig

nm
en

t e
nt

ro
py IOHMM

SimIOHMM

Fig. 4. Alignment entropy (in bits) for IOHMM and SimIOHMM as a function of the
number of training traces.

5 Related work

Fasconi and Bengio [8] introduced the concept of IOHMM. Our work differs
from this and later work on IOHMMs by introducing the use of a similarity
metric. Sequence alignment algorithms have been widely developed and applied
to spatial sequences in domains such as computational biology [11], and temporal
sequences in domains such as speech recognition. [12]

Our work differs from prior work in the field of programming by demonstra-
tion primarily in the way that alignment information is obtained. Approaches
such as SMARTedit [4] and Eager [13] implicitly align demonstrated steps using
position within the sequence itself. In these systems, the procedure is assumed
to consist of one or more iterations of the same fixed-length loop body. Thus,
the alignment can be trivially determined using each step’s position within the
sequence. A later approach [14] uses version space algebra to find an alignment
when the length of the loop body is not known. However, none of these ap-
proaches are able to learn procedures with conditionally performed steps.

6 Conclusions

This paper presents an approach to the PBD problem based on the idea of
similarity-based alignment and generalization, and makes the following contri-
butions:

– A novel approach to programming by demonstration based on similarity-
based alignment and generalization;

– The SimAlignGen class of algorithms that extend traditional sequence align-
ment algorithms by the addition of a third bias based on a similarity metric;

– An instance of an SimAlignGen algorithm, called SimIOHMM, which has
been implemented as part of a programming by demonstration system on
the Windows platform; and

– An empirical evaluation showing accuracy improvements as a function of
synthetic similarity data, and large efficiency improvements over traces col-
lected from a real-world procedure.

References

1. Rabiner, L.R., Juang, B.H.: An introduction to Hidden Markov Models. IEEE
ASSP Magazine (1986) 4–15

2. Cypher, A., ed.: Watch what I do: Programming by demonstration. MIT Press,
Cambridge, MA (1993)

3. Lieberman, H., ed.: Your Wish is My Command: Giving Users the Power to Instruct
their Software. Morgan Kaufmann (2001)

4. Lau, T., Domingos, P., Weld, D.S.: Version space algebra and its application
to programming by demonstration. In: Proc. Sevententh Int. Conf. on Machine
Learning. (2000) 527–534

5. Maulsby, D., Witten, I.H.: Cima: an interactive concept learning system for end-
user applications. Applied Artificial Intelligence 11 (1997) 653–671

6. XML Path Language: http://www.w3.org/tr/xpath (1999)
7. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occuring

in the statstical analysis of probabilistic functions of Markov chains. Annals of
Math. Statistics 41 (1970) 164–171

8. Frasconi, P., Bengio, Y.: An EM approach to grammatical inference: Input/Output
HMMs. In: Proc. IEEE Int. Conf. Pattern Recognition, ICPR ’94, Jerusalem (1994)
289–294

9. Bengio, Y., Frasconi, P.: Input-Output HMM’s for sequence processing. IEEE
Trans. Neural Networks 7 (1996) 1231–1249

10. Shields, P.: The Ergodic Theory of Discrete Sample Paths. Americal Mathematical
Society (1996)

11. Krogh, A., Brown, M., Mian, I.S., Sjolander, K., Haussler, D.: Hidden Markov
Models in computational biology: applications to protein modeling. Technical Re-
port UCSC-CRL-93-32 (1993)

12. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. IEEE 77 (1989) 257–286

13. Cypher, A.: Eager: Programming repetitive tasks by demonstration. In Cypher, A.,
ed.: Watch What I Do: Programming by Demonstration. MIT Press, Cambridge,
MA (1993) 205–217

14. Lau, T., Domingos, P., Weld, D.S.: Learning programs from traces using version
space algebra. In: Proc. 2nd Int. Conf. on Knowledge Capture. (2003)

